Câu 36 trang 42 SGK Đại số và Giải tích 11 Nâng cao

Giải các phương trình sau :

Lựa chọn câu để xem lời giải nhanh hơn

Giải các phương trình sau :

LG a

\(\tan {x \over 2} = \tan x\)

Lời giải chi tiết:

ĐKXĐ:  \(\left\{ {\matrix{{\cos {x \over 2} \ne 0} \cr {\cos x \ne 0} \cr} } \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}
\frac{x}{2} \ne \frac{\pi }{2} + k\pi \\
x \ne \frac{\pi }{2} + k\pi
\end{array} \right.\) \(\Leftrightarrow \left\{ \begin{array}{l}
x \ne \pi + k2\pi \\
x \ne \frac{\pi }{2} + k\pi
\end{array} \right.\)

Ta có:\(\tan {x \over 2} = \tan x\)

\(\Leftrightarrow x = {x \over 2} + k\pi\)

\(\Leftrightarrow x = k2\pi \,\) (nhận)

LG b

\(\tan \left( {2x + 10^\circ } \right) + \cot x = 0\)

Lời giải chi tiết:

ĐKXĐ:  \(\left\{ {\matrix{{\cos \left( {2x + 10^\circ } \right) \ne 0} \cr {\sin x \ne 0} \cr} } \right.\)

Ta có:

\(\eqalign{
& \tan \left( {2x + 10^\circ } \right) + \cot x = 0 \cr&\Leftrightarrow \tan \left( {2x + {{10}^0}} \right) =  - \cot x\cr&\Leftrightarrow \tan \left( {2x + 10^\circ } \right) = \tan \left( {90^\circ + x} \right) \cr 
& \Leftrightarrow 2x + 10^\circ = 90^\circ + x + k180^\circ\cr&\Leftrightarrow x = 80^\circ + k180^\circ \cr} \) 

Hiển nhiên \(x = 80^0 + k180^0\) thỏa mãn ĐKXĐ.

Vậy phương trình đã cho có các nghiệm là \(x = 80^0 + k180^0\)

LG c

\(\left( {1 - \tan x} \right)\left( {1 + \sin 2x} \right) = 1 + \tan x\)

Lời giải chi tiết:

Đặt \(t = \tan x\), với điều kiện \(\cos x ≠ 0\).

Ta có:  \(\sin 2x = {{2\tan x} \over {1 + {{\tan }^2}x}} = {{2t} \over {1 + {t^2}}}\)

Do đó :  \(1 + \sin 2x = 1 + {{2t} \over {1 + {t^2}}} = {{{{\left( {1 + t} \right)}^2}} \over {1 + {t^2}}}\)

Vậy ta có phương trình:

\(\eqalign{& \left( {1 - t} \right){{{{\left( {1 + t} \right)}^2}} \over {1 + {t^2}}} = 1 + t \cr & \Leftrightarrow \left( {1 - t} \right){\left( {1 + t} \right)^2} = \left( {1 + t} \right)\left( {1 + {t^2}} \right)\Leftrightarrow 2{t^2}\left( {1 + t} \right) = 0 \cr &\Leftrightarrow \left( {1 + t} \right)\left( {1 - {t^2}} \right) = \left( {1 + t} \right)\left( {1 + {t^2}} \right) \cr &\Leftrightarrow \left( {1 + t} \right)\left( {1 - {t^2} - 1 - {t^2}} \right) = 0 \cr & \Leftrightarrow \left( {1 + t} \right)\left( { - 2{t^2}} \right) = 0\cr& \Leftrightarrow \left[ {\matrix{{t = 0} \cr {t = - 1} \cr} } \right. \cr & \Leftrightarrow \left[ {\matrix{{\tan x = 0} \cr {\tan x = - 1} \cr} } \right. \cr & \Leftrightarrow \left[ {\matrix{{x = k\pi } \cr {x = - {\pi \over 4} + k\pi } \cr} } \right. (TM)\cr} \)

LG d

\(\tan x + \tan 2x = \sin 3x\cos x\)

Lời giải chi tiết:

ĐKXĐ :\(\cos x \ne 0\,\text{ và }\,\cos 2x \ne 0.\) Với điều kiện đó, ta có :

\(\eqalign{& \tan x + \tan 2x = \sin 3x\cos x \cr & \Leftrightarrow \frac{{\sin x}}{{\cos x}} + \frac{{\sin 2x}}{{\cos 2x}} = \sin 3x\cos x \cr& \Leftrightarrow \frac{{\sin x\cos 2x + \cos x\sin 2x}}{{\cos x\cos 2x}} = \sin 3x\cos x\cr& \Leftrightarrow {{\sin 3x} \over {\cos x\cos 2x}} = \sin 3x\cos x \cr & \Leftrightarrow \sin 3x\left( {{1 \over {\cos x\cos 2x}} - \cos x} \right) = 0 \cr & \Leftrightarrow \left[ {\matrix{{\sin 3x = 0} \cr {{1 \over {\cos x\cos 2x}} = \cos x} \cr} } \right. \cr & +)\sin 3x = 0 \Leftrightarrow x = k{\pi \over 3} \cr & +){1 \over {\cos x\cos 2x}} = \cos x\cr& \Leftrightarrow {\cos ^2}x\cos 2x = 1 \cr& \Leftrightarrow \frac{{1 + \cos 2x}}{2}.\cos 2x = 1\cr& \Leftrightarrow \left( {1 + \cos 2x} \right)\cos 2x = 2 \cr & \Leftrightarrow {\cos ^2}2x + \cos 2x - 2 = 0 \cr & \Leftrightarrow \cos 2x = 1 \Leftrightarrow x = k\pi \cr} \)

Vậy phương trình có nghiệm  \(x = k{\pi \over 3}\left( {k \in \mathbb Z} \right)\)

LG e

\(\tan x + \cot 2x = 2\cot 4x\)

Lời giải chi tiết:

ĐKXĐ :\(\cos x \ne 0,\sin 2x \ne 0\) và \(\sin 4x \ne 0.\)

Tuy nhiên chỉ cần \(\sin 4x ≠ 0\) là đủ (vì \(\sin 4x = 2\sin2x\cos2x = 4\sin x\cos x\cos2x\)).

Với điều kiện đó ta có :

\(\eqalign{& \tan x + \cot 2x = 2\cot 4x \cr & \Leftrightarrow {{\sin x} \over {\cos x}} + {{\cos 2x} \over {\sin 2x}} = {{2\cos 4x} \over {\sin 4x}} \cr & \Leftrightarrow {{\sin x\sin 2x + \cos x\cos 2x} \over {\cos x\sin 2x}} = {{2\cos 4x} \over {2\sin 2x\cos 2x}} \cr &  \Leftrightarrow \frac{{\cos \left( {2x - x} \right)}}{{\cos x\sin 2x}} = \frac{{\cos 4x}}{{\sin 2x\cos 2x}}\cr &  \Leftrightarrow \frac{{\cos x}}{{\cos x\sin 2x}} = \frac{{\cos 4x}}{{\sin 2x\cos 2x}} \cr &  \Leftrightarrow 1 = \frac{{\cos 4x}}{{\cos 2x}}\cr& \Leftrightarrow \cos 4x = \cos 2x \cr & \Leftrightarrow 4x = \pm 2x + k2\pi \cr &  \Leftrightarrow \left[ {\matrix{{x = k\pi } \cr {x = k{\pi \over 3}} \cr} } \right. \Leftrightarrow x = k{\pi \over 3} \cr} \)

Để là nghiệm, các giá trị này còn phải thỏa mãn điều kiện \(\sin 4x ≠ 0\).

Ta có:

- Nếu \(k\) chia hết cho 3, tức là \(k = 3m\) (\(m\in\mathbb Z\)) thì \(x = \frac{{3m\pi }}{3} = m\pi  \) \(\Rightarrow \sin 4x = \sin 4m\pi  = 0\) nên không thỏa mãn.

- Nếu \(k\) không chia hết cho 3, tức là \(k = 3m ± 1\) (\(m\in\mathbb Z\))  thì :

\(\sin 4x = \sin \left( { \pm {{4\pi } \over 3} + 4m\pi } \right) \) \(= \pm \sin {4\pi \over 3} = \pm {{\sqrt 3 } \over 2} \ne 0\) (TM)

Vậy nghiệm của phương trình là \(x = k{\pi \over 3}\) với \(k\) nguyên và không chia hết cho 3.

 HocTot.Nam.Name.Vn

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close