Bài 3 trang 159 SGK Đại số 10

Phát biểu quy tắc xét dấu một nhị thức bậc nhất. Áp dụng quy tắc đó để giải bất phương trình sau:

Đề bài

Phát biểu quy tắc xét dấu một nhị thức bậc nhất. Áp dụng quy tắc đó để giải bất phương trình sau:

\(\displaystyle f(x) = {{(3x - 2)(5 - x)} \over {(2 - 7x)}} \ge 0.\)

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Quy tắc xét dấu một nhị thức dựa trên định lí :

“Nhị thức \(f(x) = ax + b (a≠0)\) có dấu cùng với hệ số \(a\) khi \(x\)  lấy giá trị trong khoảng \(({{ - b} \over a}, + \infty )\) và trái dấu với hệ số \(a\) khi \(x\) lấy các giá trị thuộc khoảng \(( - \infty ,{{ - b} \over a})\)”.

Lời giải chi tiết

Ta có: 

\(\begin{array}{l}
+ )\;3x - 2 = 0 \Leftrightarrow x = \frac{2}{3}.\\
+ )\;5 - x = 0 \Leftrightarrow x = 5.\\
+ )\;2 - 7x = 0 \Leftrightarrow x = \frac{2}{7}.
\end{array}\)

Áp dụng: Ta lập bảng xét dấu của vế trái \(f(x)\) của bất phương trình:

Tập nghiệm của bất phương trình: \(S = ({2 \over 7},{2 \over 3}{\rm{] }} \cup {\rm{ [}}5, + \infty )\)

HocTot.Nam.Name.Vn

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close