Câu 2.113 trang 88 sách bài tập Giải tích 12 Nâng cao

Giải các hệ phương trình sau

Lựa chọn câu để xem lời giải nhanh hơn

Giải các hệ phương trình sau:

LG a

\(\left\{ \matrix{{3^x}{.2^y} = 972 \hfill \cr{\log _{\sqrt 3 }}(x - y) = 2; \hfill \cr}  \right.\)

Lời giải chi tiết:

\(\left\{ \matrix{{3^x}{.2^y} = 972 \hfill \cr{\log _{\sqrt 3 }}(x - y) = 2 \hfill \cr}  \right. \Leftrightarrow \left\{ \matrix{{3^x}{.2^y} = 972 \hfill \cr x - y = 3 \hfill \cr}  \right.\)

\(\Leftrightarrow \left\{ \matrix{ x = y + 3 \hfill \cr{3^{y+3}}{.2^y} = 972 \hfill \cr}  \right.\)

\( \Leftrightarrow \left\{ \matrix{x = y + 3 \hfill \cr{6^y} = 36 \hfill \cr}  \right. \Leftrightarrow \left\{ \matrix{x = 5 \hfill \cr y = 2 \hfill \cr}  \right.\)

LG b

\(\left\{ \matrix{ x + y = 25 \hfill \cr{\log _2}x - {\log _2}y = 2 \hfill \cr}  \right.\)

Lời giải chi tiết:

Biến đổi phương trình thứ hai trong hệ thành

                                \({x \over y} = 4\left( {x > 0,y > 0} \right)\)

Vậy \(\left( {x;y} \right) = \left( {20;5} \right)\)

HocTot.Nam.Name.Vn

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD - Click xem ngay) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.

close