Bài 2 trang 98 SGK Hình học 10

Cho tam giác ABC có hai điểm M,N sao cho

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Cho tam giác \(ABC\) có hai điểm \(M,N\)  sao cho 

\(\left\{ \matrix{
\overrightarrow {AM} = \alpha \overrightarrow {AB} \hfill \cr 
\overrightarrow {AN} = \beta \overrightarrow {AC} \hfill \cr} \right.\)

LG a

Hãy vẽ \(\displaystyle M, N\) khi \(\displaystyle \alpha  = {2 \over 3};\beta  =  - {2 \over 3}\)

Lời giải chi tiết:

Ta có:

\(\eqalign{
& \overrightarrow {AM} = {2 \over 3}\overrightarrow {AB} \Leftrightarrow \left\{ \matrix{
\overrightarrow {AM} \uparrow \uparrow \overrightarrow {AB} \hfill \cr 
AM = {2 \over 3}AB \hfill \cr} \right. \cr 
& \overrightarrow {AN} = - {2 \over 3}\overrightarrow {AC} \Leftrightarrow \left\{ \matrix{
\overrightarrow {AN} \uparrow \downarrow \overrightarrow {AC} \hfill \cr 
AN = {2 \over 3}AC \hfill \cr} \right. \cr} \)

Vậy \(M\) thuộc đoạn \(AB\) sao cho \(AM = {2 \over 3}AB \) và \(N\) thuộc tia đối của tia \(AC\) sao cho \(AN = {2 \over 3}AC .\)

LG b

Hãy tìm mối liên hệ giữa \(α, β\) để \(MN//BC\)

Lời giải chi tiết:

Ta có:

\(\begin{array}{l}
\overrightarrow {MN} = \overrightarrow {AN} - \overrightarrow {AM} = \beta \overrightarrow {AC} - \alpha \overrightarrow {AB} \\
\overrightarrow {BC} = \overrightarrow {AC} - \overrightarrow {AB} \\
MN//BC \Leftrightarrow \dfrac{\beta }{1} = \dfrac{{ - \alpha }}{{ - 1}} \Leftrightarrow \beta = \alpha
\end{array}\)

Vậy \(MN//BC \Leftrightarrow \beta  = \alpha .\)

HocTot.Nam.Name.Vn

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close