-
Bài 31 trang 53 SBT toán 12 - Kết nối tri thức
Một ô tô đang chạy với vận tốc 15 m/s thì tăng tốc, chuyển động thành chuyển động nhanh dần đều với gia tốc (a = 3t - 8left( {m/{s^2}} right)), trong đó t là khoảng thời gian tính bằng giây kể từ lúc tăng vận tốc. a) Biết vận tốc của ô tô là (vleft( t right) = frac{a}{2}{t^2} + bt + c) với (a,b,c) là các số nguyên. Tính (a + b + c). b) Quãng đường ô tô đi được sau 10 giây kể từ lúc bắt đầu tăng tốc là bao nhiêu mét? (làm tròn đến hàng đơn vị).
Xem lời giải -
Bài 32 trang 53 SBT toán 12 - Kết nối tri thức
Tính diện tích hình phẳng giới hạn bởi các đường (y = sqrt x - 2), trục hoành và các đường thẳng (x = 4,x = 9).
Xem lời giải -
Bài 33 trang 53 SBT toán 12 - Kết nối tri thức
Tính thể tích khối tròn xoay tạo thành khi quay quanh Ox hình phẳng giới hạn bởi đường parabol (y = {x^2} - 3x + 2), trục hoành và các đường thẳng (x = 1;x = 2).
Xem lời giải -
Bài 34 trang 53 SBT toán 12 - Kết nối tri thức
Cho tứ diện đều ABCD có cạnh bằng a. Tính (left( {overrightarrow {AB} + overrightarrow {AD} } right) cdot overrightarrow {BC} ).
Xem lời giải -
Bài 35 trang 53 SBT toán 12 - Kết nối tri thức
Trong không gian Oxyz, cho đường thẳng (Delta :frac{{x - 2}}{1} = frac{{y + 2}}{2} = frac{{z - 3}}{2}) và mặt phẳng (left( P right):2x + y - z - 3 = 0). a) Tính góc giữa đường thẳng (Delta ) và mặt phẳng (left( P right)). b) Viết phương trình mặt phẳng (left( Q right)) chứa (Delta ) và mặt phẳng (left( Q right)) vuông góc với mặt phẳng (left( P right)).
Xem chi tiết -
Bài 36 trang 54 SBT toán 12 - Kết nối tri thức
Trong không gian Oxyz, cho mặt cầu (left( S right):{x^2} + {y^2} + {left( {z - 2} right)^2} = 9) và mặt phẳng (left( P right):2x + 2y - z + 8 = 0). a) Xác định tâm I và bán kính R của mặt cầu (S). b) Chứng minh rằng mặt phẳng (P) cắt mặt cầu (S). Tính bán kính r của đường tròn giao tuyến của (P) và (S).
Xem lời giải -
Bài 37 trang 54 SBT toán 12 - Kết nối tri thức
Trong không gian Oxyz, cho hai đường thẳng: (Delta :left{ begin{array}{l}x = 3\y = 1 + t\z = - 1 + 3tend{array} right.) và (Delta ':left{ begin{array}{l}x = 1 + s\y = - 2 + 3s\z = - 5end{array} right.) a) Xét vị trí tương đối của hai đường thẳng (Delta ) và (Delta '). b) Tính cosin góc giữa hai đường thẳng (Delta ) và (Delta ').
Xem lời giải -
Bài 38 trang 54 SBT toán 12 - Kết nối tri thức
Trong không gian (Oxyz), cho hai điểm (Aleft( {1;2;0} right)) và (Bleft( {3;2;2} right)) a) Viết phương trình tham số của đường thẳng (AB). b) Viết phương trình mặt cầu đường kính (AB). c) Viết phương trình mặt phẳng (left( {OAB} right)). d) Tìm tọa độ điểm (M) nằm trên mặt phẳng (left( {Oyz} right)) sao cho (M{A^2} + M{B^2}) nhỏ nhất.
Xem lời giải -
Bài 39 trang 54 SBT toán 12 - Kết nối tri thức
Một quả bóng được chuyền theo một đường parabol nằm trong một mặt phẳng (left( alpha right)) vuông góc với mặt sân cỏ, từ vị trí O đến vị trí A cách O một khoảng 20 m về hướng (S{30^ circ }E) (hướng tạo với hướng nam góc ({30^ circ }) và tạo với hướng đông góc ({60^ circ })). Các vị trí O, A đều thuộc sân cỏ. Chọn hệ trục tọa độ Oxyz có gốc tại điểm O, các trục Ox, Oy thuộc mặt sân cỏ (phẳng), tia Ox chỉ hướng nam, tia Oy chỉ hướng đông, đơn vị đo theo mét. Viết phương trình mặt p
Xem lời giải -
Bài 40 trang 54 SBT toán 12 - Kết nối tri thức
Đối với một vị trí P trong không trung, gọi M là giao điểm của tia OP với bề mặt Trái Đất. Khi đó vĩ độ, kinh độ của M cũng tương ứng được gọi là vĩ độ, kinh độ của P, độ dài PM được gọi là cao độ (so với mặt đất) của P. Vị trí P trong không trung hoàn toàn xác định khi biết vĩ độ, kinh độ và cao độ của nó. Tại một thời điểm, một vệ tinh ở vị trí có độ cao 19 113 km so với mặt đất và có vĩ độ và kinh độ tương ứng là ({30^ circ }N{,60^ circ }W). Trong không gian Oxyz, tính tọa độ của vị trí v
Xem lời giải