Nội dung từ Loigiaihay.Com
Cho tam giác $ABC$ vuông tại $A$ , có$AB = 15cm;AC = 20cm$. Tính bán kính đường tròn ngoại tiếp tam giác $ABC.$
$R = 25$
$R = \dfrac{{25}}{2}$
$R = 15$
$R = 20$
Trong tam giác vuông trung điểm cạnh huyền là tâm đường tròn ngoại tiếp.
Sử dụng định lý Pytago để tính toán
Vì tam giác $ABC$ vuông tại$A$ nên tâm đường tròn ngoại tiếp là trung điểm cạnh huyền $BC$, bán kính là $R = \dfrac{{BC}}{2}$.
Theo định lý Pytago ta có $BC = \sqrt {A{C^2} + A{B^2}} = 25$ nên bán kính $R = \dfrac{{25}}{2}$.
Đáp án : B
Các bài tập cùng chuyên đề
Số tâm đối xứng của đường tròn là:
Khẳng định nào sau đây là đúng khi nói về trục đối xứng của đường tròn
Tâm đường tròn ngoại tiếp tam giác là
Cho đường tròn $\left( {O;R} \right)$ và điểm $M$ bất kỳ, biết rằng $OM = R$. Chọn khẳng định đúng?
Xác định tâm và bán kính của đường tròn đi qua cả bốn đỉnh của hình vuông $ABCD$ cạnh $a.$
Tâm của đường tròn ngoại tiếp tam giác vuông là
Cho tam giác $ABC$ có các đường cao $BD,CE$ . Biết rằng bốn điểm $B,E,D,C$ cùng nằm trên một đường tròn. Chỉ rõ tâm và bán kính của đường tròn đó.
Trên mặt phẳng tọa độ $Oxy$, xác định vị trí tương đối của điểm $A\left( { - 1; - 1} \right)$ và đường tròn tâm là gốc tọa độ $O$, bán kính $R = 2\,$.
Cho hình chữ nhật $ABCD$ có$AB = 12cm,BC = 5cm$ .Tính bán kính đường tròn đi qua bốn đỉnh $A,B,C,D$.
Cho hình vuông $ABCD$. Gọi $M,N$ lần lượt là trung điểm của $AB,BC$ . Gọi $E$ là giao điểm của $CM$ và $DN$. Tâm của đường tròn đi qua bốn điểm $A,D,E,M$ là