Nội dung từ Loigiaihay.Com
Cho hai đường tròn \(\left( O \right)\) và \(\left( {O'} \right)\)tiếp xúc ngoài tại \(A\). Kẻ các đường kính \(AOB;AO'C\). Gọi \(DE\) là tiếp tuyến chung của hai đường tròn \(\left( {D \in \left( O \right);E \in \left( {O'} \right)} \right)\). Gọi \(M\) là giao điểm của \(BD\) và \(CE\). Tính diện tích tứ giác \(ADME\) biết \(\widehat {DOA} = 60^\circ \) và \(OA = 8\,cm\)
\(12\sqrt 3 \,\,c{m^2}\)
\( \dfrac{64}{3}\sqrt 3 \,\,c{m^2}\)
\( \dfrac{32}{3}\sqrt 3 \,\,c{m^2}\)
\(36\,\,c{m^2}\)
Sử dụng tính chất đường nối tâm của hai đường tròn cắt nhau và hệ thức lượng trong tam giác vuông.
Diện tích hình chữ nhật bằng tích chiều dài và chiều rộng.
Xét \(\left( O \right)\) có \(OD = OA \Rightarrow \Delta OAD\) cân tại \(O \Rightarrow \widehat {ODA} = \widehat {OAD}\)
Xét \(\left( {O'} \right)\) có \(O'E = O'A \Rightarrow \Delta O'EB\) cân tại \(O' \Rightarrow \widehat {O'EA} = \widehat {O'AE}\)
Mà \(\widehat O + \widehat {O'} = 360^\circ - \widehat {O'ED} - \widehat {ODE} = 180^\circ \)
\( \Leftrightarrow 180^\circ - \widehat {ODA} - \widehat {OAD} + 180^\circ - \widehat {O'EA} - \widehat {O'AE} = 180^\circ \Leftrightarrow 2\left( {\widehat {OAD} + \widehat {O'AE}} \right) = 180^\circ \)
\( \Rightarrow \widehat {OAD} + \widehat {O'AE} = 90^\circ \)\( \Rightarrow \widehat {DAE} = 90^\circ \Rightarrow \Delta ADE\) vuông tại \(A\).
Mà \(\widehat {BDA} = 90^\circ \) ( vì tam giác \(BAD\) có cạnh \(AB\) là đường kính của \(\left( O \right)\)và \(D \in \left( O \right)\) ) nên \(BD \bot AD \Rightarrow \widehat {MDA} = 90^\circ \)
Tương tự ta có \(\widehat {MEA} = 90^\circ \) .\(\)\(\)
Nên tứ giác \(DMEA\) là hình chữ nhật.
Xét tam giác \(OAD\) cân tại \(O\) có \(\widehat {DOA} = 60^\circ \) nên \(\Delta DOA\) đều, suy ra \(OA = AD = 8\,cm\) và \(\widehat {ODA} = 60^\circ \)
\( \Rightarrow \widehat {ADE} = 30^\circ \). Xét tam giác \(ADE\) ta có \(EA = AD.\tan \widehat {EDA} = 8.\tan 30^\circ = \dfrac{8}{3}\sqrt 3 \)
\({S_{DMEA}} = AD.AE = 8.\dfrac{8}{3}\sqrt 3 = \dfrac{64}{3}\sqrt 3 \,\,c{m^2}\).
Đáp án : B
Các bài tập cùng chuyên đề
Nếu hai đường tròn tiếp xúc với nhau thì số điểm chung của hai đường tròn là
Cho hai đường tròn $\left( {O;R} \right)$ và $\left( {O';r} \right)$ với $R > r$ cắt nhau tại hai điểm phân biệt và $OO' = d$. Chọn khẳng định đúng?
Cho hai đường tròn $\left( {O;20cm} \right)$ và $\left( {O';15cm} \right)$ cắt nhau tại $A$ và$B$. Tính đoạn nối tâm $OO'$, biết rằng$AB = 24cm$ và $O$ và $O'$ nằm cùng phía đối với $AB$ .
Cho hai đường tròn $\left( {O;8\,cm} \right)$ và $\left( {O';6cm} \right)$ cắt nhau tại $A,B$ sao cho $OA$ là tiếp tuyến của $\left( {O'} \right)$. Độ dài dây $AB$ là
Cho hai đường tròn $\left( O \right)$ và $\left( {O'} \right)$ tiếp xúc ngoài tại $A$. Kẻ các đường kính $AOB;AO'C$. Gọi $DE$ là tiếp tuyến chung của hai đường tròn $\left( {D \in \left( O \right);E \in \left( {O'} \right)} \right)$. Gọi $M$ là giao điểm của $BD$ và $CE$. Tính diện tích tứ giác $ADME$ biết $\widehat {DOA} = 60^\circ $ và $OA = 6\,cm.$
Cho hai đường tròn $\left( O \right);\left( {O'} \right)$ cắt nhau tại $A,B$, trong đó $O' \in \left( O \right)$. Kẻ đường kính $O'OC$ của đường tròn $\left( O \right)$. Chọn khẳng định sai?
Cho đường thẳng xy và đường tròn (O; R) không giao nhau. Gọi M là một điểm di động trên xy. Vẽ đường tròn đường kính OM cắt đường tròn (O) tại A và B. Kẻ \(OH \bot xy\) . Chọn câu đúng.
Cho hai đường tròn (O;5) và (O’;5) cắt nhau tại A và B. Biết OO’=8. Độ dài dây cung AB là
Cho đường tròn tâm \(O\) bán kính \(R = 2cm\) và đường tròn tâm \(O'\) bán kính \(R' = 3cm.\) Biết \(OO' = 6cm.\) Số tiếp tuyến chung của hai đường tròn đã cho là:
Cho hai đường tròn \(\left( {I;7cm} \right)\) và \(\left( {K;5cm} \right)\). Biết \(IK = 2cm\). Quan hệ giữa hai đường tròn là: