Nội dung từ Loigiaihay.Com
Cho đường tròn tâm \(O\) bán kính \(R = 2cm\) và đường tròn tâm \(O'\) bán kính \(R' = 3cm.\) Biết \(OO' = 6cm.\) Số tiếp tuyến chung của hai đường tròn đã cho là:
Cho hai đường tròn \(\left( {O;\,\,R} \right)\) và \(\left( {O';\,\,R'} \right)\) khi đó ta có:
+) \(OO' > R + R'\) thì hai đường tròn nằm ngoài nhau hay hai đường tròn không có điểm chung.
\( \Rightarrow \) Hai đường tròn có \(4\) tiếp tuyến chung.
+) \(OO' < \left| {R - R'} \right|\) thì hai đường tròn đựng nhau hay hai đường tròn không có điểm chung.
\( \Rightarrow \) Hai đường tròn không có tiếp tuyến chung.
+) \(\left| {R - R'} \right| < OO' < R + R'\) thì hai đường tròn cắt nhau hay hai đường tròn có hai điểm chung.
\( \Rightarrow \) Hai đường tròn có \(2\) tiếp tuyến chung.
+) \(OO' = R + R'\) thì hai đường tròn tiếp xúc ngoài hay hai đường tròn có một điểm chung.
\( \Rightarrow \) Hai đường tròn có \(1\) tiếp tuyến chung.
+) \(OO' < \left| {R - R'} \right|\) thì hai đường tròn tiếp xúc trong hay hai đường tròn có một điểm chung.
\( \Rightarrow \) Hai đường tròn có \(1\) tiếp tuyến chung.
Ta có: \(OO' = 6cm\)
Lại có: \(\left\{ \begin{array}{l}R' = 3cm\\R = 2cm\end{array} \right. \Rightarrow R' + R = 3 + 2 = 5cm < OO'\)
\( \Rightarrow \) Hai đường tròn nằm ngoài nhau
\( \Rightarrow \) Hai đường tròn có \(4\) tiếp tuyến chung.
Đáp án : D
Các bài tập cùng chuyên đề
Nếu hai đường tròn tiếp xúc với nhau thì số điểm chung của hai đường tròn là
Cho hai đường tròn $\left( {O;R} \right)$ và $\left( {O';r} \right)$ với $R > r$ cắt nhau tại hai điểm phân biệt và $OO' = d$. Chọn khẳng định đúng?
Cho hai đường tròn $\left( {O;20cm} \right)$ và $\left( {O';15cm} \right)$ cắt nhau tại $A$ và$B$. Tính đoạn nối tâm $OO'$, biết rằng$AB = 24cm$ và $O$ và $O'$ nằm cùng phía đối với $AB$ .
Cho hai đường tròn $\left( {O;8\,cm} \right)$ và $\left( {O';6cm} \right)$ cắt nhau tại $A,B$ sao cho $OA$ là tiếp tuyến của $\left( {O'} \right)$. Độ dài dây $AB$ là
Cho hai đường tròn $\left( O \right)$ và $\left( {O'} \right)$ tiếp xúc ngoài tại $A$. Kẻ các đường kính $AOB;AO'C$. Gọi $DE$ là tiếp tuyến chung của hai đường tròn $\left( {D \in \left( O \right);E \in \left( {O'} \right)} \right)$. Gọi $M$ là giao điểm của $BD$ và $CE$. Tính diện tích tứ giác $ADME$ biết $\widehat {DOA} = 60^\circ $ và $OA = 6\,cm.$
Cho hai đường tròn $\left( O \right);\left( {O'} \right)$ cắt nhau tại $A,B$, trong đó $O' \in \left( O \right)$. Kẻ đường kính $O'OC$ của đường tròn $\left( O \right)$. Chọn khẳng định sai?
Cho đường thẳng xy và đường tròn (O; R) không giao nhau. Gọi M là một điểm di động trên xy. Vẽ đường tròn đường kính OM cắt đường tròn (O) tại A và B. Kẻ \(OH \bot xy\) . Chọn câu đúng.
Cho hai đường tròn (O;5) và (O’;5) cắt nhau tại A và B. Biết OO’=8. Độ dài dây cung AB là
Cho hai đường tròn \(\left( {I;7cm} \right)\) và \(\left( {K;5cm} \right)\). Biết \(IK = 2cm\). Quan hệ giữa hai đường tròn là: