Đề bài

Cho tam giác ABC có AB = 9cm, AC = 12cm, BC = 15cm. Độ dài đường cao AH (H \( \in \) BC) của tam giác ABC là

  • A.

    8,4cm.

  • B.

    7,2cm.

  • C.

    6,8cm.

  • D.

    4,2cm.

Phương pháp giải

Chứng minh tam giác ABC vuông. Sử dụng tính chất của tỉ số lượng giác để tính AH.

Lời giải của GV HocTot.Nam.Name.Vn

Vì \(A{B^2} + A{C^2} = {9^2} + {12^2} = 225 = {15^2} = B{C^2}\) nên tam giác ABC vuông tại A.

Khi đó \(\sin B = \frac{{AC}}{{BC}} = \frac{{12}}{{15}} = \frac{4}{5}\).

Mà tam giác ABH vuông tại H nên \(\sin B = \frac{{AH}}{{AB}} = \frac{{AH}}{9}\).

Suy ra \(\frac{{AH}}{9} = \frac{4}{5}\).

Do đó \(AH = 9.\frac{4}{5} = \frac{{36}}{5} = 7,2\left( {cm} \right)\).

Đáp án B

Đáp án : B

Các bài tập cùng chuyên đề

Bài 1 :

Cho tam giác $MNP$ vuông tại $M$. Khi đó $\cos \widehat {MNP}$ bằng

Xem lời giải >>
Bài 2 :

Cho $\alpha $ là góc nhọn bất kỳ. Chọn khẳng định đúng.

Xem lời giải >>
Bài 3 :

Cho $\alpha $ là góc nhọn bất kỳ. Chọn khẳng định sai.

Xem lời giải >>
Bài 4 :

Cho tam giác $ABC$ vuông tại  $C$ có \(BC = 1,2\,cm,\,\,AC = 0,9\,cm.\) Tính các tỉ số lượng giác $\sin B;\cos B$ .

Xem lời giải >>
Bài 5 :

Cho tam giác $ABC$ vuông tại  $A$ có \(BC = 8\,cm,\,\,AC = 6cm.\) Tính tỉ số lượng giác $\tan C$ (làm tròn đến chữ số thập phân thứ $2$ ).

Xem lời giải >>
Bài 6 :

Cho tam giác $ABC$ vuông tại  $A$, đường cao $AH$ có \(CH = 4\,cm,\,BH = 3\,cm.\) Tính tỉ số lượng giác $\cos C$ (làm tròn đến chữ số thập phân thứ $2$ )

Xem lời giải >>
Bài 7 :

Cho $\alpha$ là góc nhọn. Tính \(\sin \alpha,\,\cot \alpha \) biết \(\cos \alpha  = \dfrac{2}{5}\).

Xem lời giải >>
Bài 8 :

Cho $\alpha $ là góc nhọn bất kỳ. Khi đó $C = {\sin ^4}\alpha  + {\cos ^4}\alpha $ bằng

Xem lời giải >>
Bài 9 :

Cho $\alpha $ là góc nhọn bất kỳ. Rút gọn $P = \left( {1 - {{\sin }^2}\alpha } \right).{\cot ^2}\alpha  + 1 - {\cot ^2}\alpha $ ta được

Xem lời giải >>
Bài 10 :

Cho $\alpha $ là góc nhọn bất kỳ. Biểu thức $Q = \dfrac{{1 + {{\sin }^2}\alpha }}{{1 - {{\sin }^2}\alpha }}$ bằng

Xem lời giải >>
Bài 11 :

Cho $\tan \alpha  = 2$. Tính giá trị của biểu thức $G = \dfrac{{2\sin \alpha  + \cos \alpha }}{{\cos \alpha  - 3\sin \alpha }}$

Xem lời giải >>
Bài 12 :

Cho tam giác nhọn \(ABC\) hai đường cao \(AD\) và \(BE\) cắt nhau tại \(H\). Biết \(HD:HA = 1:2\). Khi đó \(\tan \widehat {ABC}.\tan \widehat {ACB}\) bằng

Xem lời giải >>
Bài 13 :

Cho tam giác \(MNP\) vuông tại \(M\). Khi đó \(\tan \widehat {MNP}\) bằng

Xem lời giải >>
Bài 14 :

Cho tam giác \(ABC\) vuông tại  \(C\) có \(AC = 1\,cm,\,\,BC = 2\,cm.\) Tính các tỉ số lượng giác \(\sin B;\cos B\)

Xem lời giải >>
Bài 15 :

Cho tam giác \(ABC\) vuông tại  \(A\) có \(BC = 9\,cm,\,\,AC = 5cm.\) Tính tỉ số lượng giác \(\tan C\) (làm tròn đến chữ số thập phân thứ \(1\) )

Xem lời giải >>
Bài 16 :

Cho tam giác \(ABC\) vuông tại \(A\), đường cao \(AH\) có \(CH = 11\,cm,\,BH = 12\,cm.\) Tính tỉ số lượng giác \(\cos C\) (làm tròn đến chữ số thập phân thứ \(2\) )

Xem lời giải >>
Bài 17 :

Tính \(\sin \alpha ,\,\,\tan \alpha \) biết \(\cos \alpha  = \dfrac{3}{4}\).

Xem lời giải >>
Bài 18 :

Cho \(\alpha \) là góc nhọn bất kỳ. Khi đó \(C={\sin ^6}\alpha  + {\cos ^6}\alpha  + 3{\sin ^2}\alpha {\cos ^2}\alpha \) bằng

Xem lời giải >>
Bài 19 :

Cho \(\alpha \) là góc nhọn bất kỳ. Cho \(P = \left( {1 - {{\sin }^2}\alpha } \right).{\tan ^2}\alpha  + \left( {1 - {{\cos }^2}\alpha } \right){\cot ^2}\alpha \), chọn kết luận đúng.

Xem lời giải >>
Bài 20 :

Cho \(\alpha \) là góc nhọn bất kỳ. Biểu thức \(Q = \dfrac{{{{\cos }^2}\alpha  - {{\sin }^2}\alpha }}{{\cos \alpha .\sin \alpha }}\) bằng

Xem lời giải >>
Bài 21 :

Cho \(\tan \alpha  = 4\). Tính giá trị của biểu thức \(P = \dfrac{{3\sin \alpha  - 5\cos \alpha }}{{4\cos \alpha  + \sin \alpha }}\)

Xem lời giải >>
Bài 22 :

Cho tam giác nhọn \(ABC\) hai đường cao \(AD\) và \(BE\) cắt nhau tại \(H\). Biết \(HD:HA = 3:2\). Khi đó \(\tan \widehat {ABC}.\tan \widehat {ACB}\) bằng

Xem lời giải >>
Bài 23 :

Chọn kết luận đúng về giá trị biểu thức \(B = \dfrac{{{{\cos }^2}\alpha  - 3{{\sin }^2}\alpha }}{{3 - {{\sin }^2}\alpha }}\)  biết \(\tan \alpha  = 3.\)

Xem lời giải >>
Bài 24 :

Cho tam giác \(ABC\) cân tại \(A\) có  \(AB = AC = 13cm\); \(BC = 10cm\). Tính \(sinA\).

Xem lời giải >>
Bài 25 :

Cho tam giác \(ABC\) vuông tại \(A\) có \(AC = 3,AB = 4\). Khi đó \(\cos B\) bằng

Xem lời giải >>
Bài 26 :

Cho hai tam giác vuông \(OAB\) và \(OCD\) như hình vẽ. Biết \(OB = CD = a\), \(AB = OD = b.\) Tính \(\cos \angle AOC\) theo \(a\) và \(b\).

Xem lời giải >>
Bài 27 :

Xét góc C của tam giác ABC vuông tại A (H.4.3) . Hãy chỉ ra cạnh đối và cạnh kề của góc C.


Xem lời giải >>
Bài 28 :

Cho tam giác ABC vuông tại A và tam giác A’B’C’ vuông tại A’ có \(\widehat B = \widehat {B'} = \alpha .\) Chứng minh rằng:

a) \(\Delta ABC\backsim \Delta A'B'C';\)

b) \(\frac{{AC}}{{BC}} = \frac{{A'C'}}{{B'C'}};\frac{{AB}}{{BC}} = \frac{{A'B'}}{{B'C'}};\frac{{AC}}{{AB}} = \frac{{A'C'}}{{A'B'}};\frac{{AB}}{{AC}} = \frac{{A'B'}}{{A'C'}}\)

Xem lời giải >>
Bài 29 :

Cho tam giác ABC vuông tại A có AB = 5 cm, AC = 12 cm. Hãy tính các tỉ số lượng giác của góc B.

Xem lời giải >>
Bài 30 :

Cho tam giác ABC vuông tại A. Tính các tỉ số lượng giác sin, cosin, tang, cotang của các góc nhọn B và C khi biết:

a) AB = 8 cm, BC = 17 cm;

b) AC = 0,9 cm, AB = 1,2 cm.

Xem lời giải >>