Nội dung từ Loigiaihay.Com
Một hồ bơi có dạng tứ giác \(ABCD\) được mô tả như hình vẽ bên. Biết \(AC\) là tia phân giác \(\widehat {BAD}\) và \(\widehat {DAC} = 40^\circ \).
a) Tính \(\widehat {BCD}.\)
b) Biết \(AB = 7,66\) m và \(BC = 6,43\) m. Một vận động viên bơi lội muốn bơi từ \(A\) đến \(C\) trong 20 giây thì cần bơi với vận tốc là bao nhiêu (làm tròn kết quả đến hàng phần mười)?
a) Dựa vào tính chất của tia phân giác để tính góc BAD.
Sử dụng định lí tổng các góc của một tứ giác bẳng \(360^\circ \) để tính góc BCD.
b) Sử dụng định lí Pythagore để tính AC.
Dựa vào kiến thức: quãng đường = vận tốc . thời gian để tính vận tốc của vận động viên.
a) Do \(AC\) là tia phân giác \(\widehat {BAD}\) nên ta có \(\widehat {BAD} = 2\widehat {DAC} = 2 \cdot 40^\circ = 80^\circ \)
Xét tứ giác \(ABCD\) có: \(\widehat {BAD} + \widehat {B\,} + \widehat {BCD} + \widehat {D\,} = 360^\circ \)
Suy ra
\(\widehat {BCD} = 360^\circ - \left( {\widehat {BAD} + \widehat {B\,} + \widehat {D\,}} \right) \\= 360^\circ - \left( {80^\circ - 90^\circ - 90^\circ } \right) = 100^\circ \)
b) Xét \(\Delta ABC\) vuông tại \(B\), theo định lí Pythagore ta có:
\(A{C^2} = A{B^2} + B{C^2} = 7,{66^2} + 6,{43^2} = 100,0205\)
Suy ra \(AC = \sqrt {100,0205} \approx 10,0\) m.
Khi đó vận động viên cần bơi với vận tốc là \(\frac{{10,0}}{{20}} = 0,5\) (m/s).
Các bài tập cùng chuyên đề
Tứ giác ABCD có \(\widehat C + \widehat D = {90^o}\) Chọn câu đúng.
Cho tam giác ABC vuông cân ở A. Tính độ dài BC biết AB = AC = 2 dm
Cho hình vẽ. Tính x.
Một tam giác vuông có cạnh huyền bằng 26cm độ dài các cạnh góc vuông tỉ lệ với 5 và 12. Tính độ dài các cạnh góc vuông.
Cho hình vẽ sau. Tính \(x\).
Cạnh huyền của một tam giác là bao nhiêu biết hai cạnh góc vuông là 3 và 4.
Cho tam giác ABC vuông cân ở A. Tính độ dài BC biết AB = AC = 4 dm
Cho hình vẽ. Tính x:
Cho tam giác ABC cân tại A. Kẻ AH vuông góc với BC tại H. Cho BH = 2cm, AB = 4cm. Tính AH:
Cho tam giác ABC cân tại A. Kẻ AH vuông góc với BC tại H. Cho BH = 5cm , AB = 13cm. Tính diện tích tam giác ABC:
Cho ABCD là hình vuông cạnh 4 cm (hình vẽ). Khi đó độ dài đường chéo AC là:
Một tam giác vuông có độ dài cạnh huyền bằng 20 cm, độ dài các cạnh góc vuông tỉ lệ với 3 và 4. Tính độ dài các cạnh góc vuông.
Cho tam giác ABC vuông ở A có AC = 20 cm. Kẻ \(AH \bot BC\). Biết BH = 9cm; HC = 16cm. Tính AB , AH
Cho tam giác ABC. Kẻ AH vuông góc với BC. Tính chu vi tam giác ABC biết AB = 5cm, AH = 4 cm, \(HC = \sqrt {184} cm\). (làm tròn đến chữ số thập phân thứ nhất).
Cho hình vẽ sau. Tính x.
Tính cạnh huyền của một tam giác vuông biết tỉ số các cạnh góc vuông là 3 : 4 và chu vi tam giác là 36 cm
Tìm x trong hình vẽ sau:
Tìm x trong hình vẽ sau:
Tìm câu trả lời sai. Cho hình vẽ biết DE // HK. Khi đó:
Cho tam giác ABC biết BC = 7,5cm; CA = 4,5cm, AB = 6cm. Độ dài đường cao AH của tam giác ABC là:
Cho tam giác ABC cân tại A biết AB = AC = 17cm. Kẻ \(B{\rm{D}} \bot AC\), biết BD = 15cm. Tính cạnh đáy BC.
Tính x trong hình sau:
Cho một tam giác vuông có hai cạnh góc vuông là \(a\), \(b\) và cạnh huyền là \(c\).
- Lấy một tờ bìa lớn, cắt tám hình tam giác vuông bằng tam giác vuông đã cho và cắt hai hình vuông lớn có cùng có cạnh bằng \(a + b\).
- Đặt bốn tam giác vuông lên hình vuông thứ nhất trong Hình 1a. Phần bìa không bị che lấp gồm hai hình vuông có cạnh lần lượt là \(a\) và \(b\). Tính diện tích phần bìa đó là \(a\) và \(b\).
- Đặt bốn tam giác vuông còn lại lên hình vuông thứ hai như trong Hình 1b. Phần bìa không bị che lấp là hình vuông có cạnh là \(c\). Tính diện tích phần bìa đó theo \(c\).
- Rút ra kết luận về quan hệ giữa \({a^2} + {b^2}\) và \({c^2}\).
Tính độ dài cạnh \(EF\), \(MN\) của các tam giác vuông trong hình 3.
Một chiếc ti vi màn hình phẳng có chiều rộng và chiều dài đo được lần lượt là \(72\)cm và \(120\)cm. Tính độ dài đường chéo của màn hình chiếc ti vi đó theo đơn vị inch (biết 1 inch \( \approx \)\(2,54\)cm).
a) Nam dự định làm một cái êke từ ba thanh nẹp gỗ. Nam đã có hai thanh làm hai cạnh góc vuông dài \(6\)cm và \(8\)cm. Hỏi thanh nẹp còn lại Nam phải làm có độ dài bao nhiêu? (Giả sử các mối nối không đáng kể).
b) Một khung gỗ \(ABCD\) (Hình 6) được tạo thành từ \(5\) thanh nẹp có độ dài như sau: \(AB = CD = 36\)cm; \(BC = AD = 48\)cm; \(AC = 60\)cm. Chứng minh rằng \(\widehat {ABC}\) và \(\widehat {ADC}\) là các góc vuông.
Cho tam giác \(ABC\) vuông tại \(A\).
a) Tính độ dài cạnh \(BC\) nếu biết \(AB = 7\)cm, \(AC = 24\)cm.
b) Tính độ dài cạnh \(AB\) biết \(AC = 2\)cm, \(BC = \sqrt {13} \)cm.
c) Tính độ dài cạnh \(AC\) nếu biết \(BC = 25\)cm, \(AB = 15\)cm.
Lần lượt tính độ dài các cạnh huyền \(a\), \(b\), \(c\), \(d\) của các tam giác vuông trong Hình 12. Hãy dự đoán kết quả của các cạnh huyền còn lại.
Quan sát Hình 1, bạn Đan khẳng định: Diện tích của hình vuông lớn nhất bằng tổng diện tích của hai hình vuông còn lại.
Bạn Đan đã dựa vào kiến thức nào để đưa ra khẳng định trên?
Thực hiện các hoạt động sau:
a) Vẽ và cắt giấy để có 4 hình tam giác vuông như nhau với độ dài cạnh huyền là a, độ dài hai cạnh góc vuông là b và c, trong đó a, b, c có cùng đơn vị độ dài (Hình 2)
b) Vẽ hình vuông ABCD có cạnh là b + c như Hình 3. Đặt hình 4 tam giác vuông đã cắt ở câu a lên hình vuông ABCD vừa vẽ, phần chưa bi che đi là hình vuông MNPQ với đọ dài cạnh a (Hình 4)
c) Gọi S1 là diện tích của hình vuông ABCD. Gọi S2 là tổng diện tích của hình vuông MNPQ và diện tích của 4 tam giác vuông AQM, BMN, CNP, DPQ. So sánh S1 và S2.
d) Dựa vào kết quả ở câu c, dự đoán mỗi liên hệ giữa a2 và b2 + c2.