Đề bài

Cho tam giác \(ABC\) vuông có cạnh huyền \(AB = \sqrt {117} \;\;{\rm{cm,}}\,\,BC = 6\;\;{\rm{cm}}.\) Gọi \(K\) là trung điểm của đoạn thẳng \(AC\). Độ dài \(BK\) là

  • A.

    \(3\;\;{\rm{cm}}\).

  • B.

    \(4,5\;\;{\rm{cm}}\).

  • C.

    \(7,5\;\;{\rm{cm}}\).

  • D.

    \(10\;\;{\rm{cm}}\).

Phương pháp giải

Áp dụng định lí Pythagore vào tam giác ABC để tính AC.

Tính độ dài CK.

Áp dụng định lí Pythagore vào tam giác BCK để tính BK.

Lời giải của GV HocTot.Nam.Name.Vn

Xét \(\Delta ABC\) vuông tại \(C\), theo định lí Pythagore ta có:

\(A{C^2} = A{B^2} - B{C^2} = {\left( {\sqrt {117} } \right)^2} - {6^2} = 81\)

Suy ra \(AC = \sqrt {81}  = 9\;\;{\rm{cm}}\)

Do \(K\) là trung điểm của đoạn thẳng \(AC\) nên \(CK = \frac{1}{2}AC = 4,5\;\;{\rm{cm}}\)

Xét \(\Delta BCK\) vuông tại \(C\), theo định lí Pythagore ta có:

\(B{K^2} = B{C^2} + C{K^2} = {6^2} + 4,{5^2} = 56,25\)

Suy ra \(BK = \sqrt {56,25}  = 7,5\;\;{\rm{cm}}\).

Đáp án C.

Đáp án : C

Các bài tập cùng chuyên đề

Bài 1 :

Tứ giác ABCD có \(\widehat C + \widehat D = {90^o}\) Chọn câu đúng.

Xem lời giải >>
Bài 2 :

Cho tam giác ABC vuông cân ở A. Tính độ dài BC biết AB = AC = 2 dm

Xem lời giải >>
Bài 3 :

Cho hình vẽ. Tính x.

Xem lời giải >>
Bài 4 :

Một tam giác vuông có cạnh huyền bằng 26cm độ dài các cạnh góc vuông tỉ lệ với 5 và 12. Tính độ dài các cạnh góc vuông.

Xem lời giải >>
Bài 5 :

Cho hình vẽ sau. Tính \(x\).

Xem lời giải >>
Bài 6 :

Cạnh huyền của một tam giác là bao nhiêu biết hai cạnh góc vuông là 3 và 4.

Xem lời giải >>
Bài 7 :

Cho tam giác ABC vuông cân ở A. Tính độ dài BC biết AB = AC = 4 dm

Xem lời giải >>
Bài 8 :

Cho hình vẽ. Tính x:

Xem lời giải >>
Bài 9 :

Cho tam giác ABC cân tại A. Kẻ AH  vuông góc với BC tại H. Cho BH = 2cm, AB = 4cm. Tính AH:

Xem lời giải >>
Bài 10 :

Cho tam giác ABC cân tại A. Kẻ AH  vuông góc với BC tại H. Cho BH = 5cm , AB = 13cm. Tính diện tích tam giác ABC:

Xem lời giải >>
Bài 11 :

Cho ABCD là hình vuông cạnh 4 cm (hình vẽ). Khi đó độ dài đường chéo AC là:

Xem lời giải >>
Bài 12 :

Một tam giác vuông có độ dài cạnh huyền bằng 20 cm, độ dài các cạnh góc vuông tỉ lệ với 3 và 4. Tính độ dài các cạnh góc vuông.

Xem lời giải >>
Bài 13 :

Cho tam giác ABC vuông ở A có AC = 20 cm. Kẻ \(AH \bot BC\). Biết BH = 9cm; HC = 16cm. Tính AB , AH

Xem lời giải >>
Bài 14 :

Cho tam giác ABC. Kẻ AH vuông góc với BC. Tính chu vi tam giác ABC biết AB = 5cm, AH = 4 cm, \(HC = \sqrt {184} cm\). (làm tròn đến chữ số thập phân thứ nhất).

Xem lời giải >>
Bài 15 :

Cho hình vẽ sau. Tính x.

Xem lời giải >>
Bài 16 :

Tính cạnh huyền của một tam giác vuông biết tỉ số các cạnh góc vuông là 3 : 4 và chu vi tam giác là 36 cm

Xem lời giải >>
Bài 17 :

Tìm x trong hình vẽ sau:

Xem lời giải >>
Bài 18 :

Tìm x trong hình vẽ sau:

Xem lời giải >>
Bài 19 :

Tìm câu trả lời sai. Cho hình vẽ biết DE // HK. Khi đó:

Xem lời giải >>
Bài 20 :

Cho tam giác ABC biết BC = 7,5cm; CA = 4,5cm, AB = 6cm. Độ dài đường cao AH của tam giác ABC là:

Xem lời giải >>
Bài 21 :

Cho tam giác ABC cân tại A biết AB = AC = 17cm. Kẻ \(B{\rm{D}} \bot AC\), biết BD = 15cm. Tính cạnh đáy BC.

Xem lời giải >>
Bài 22 :

Tính x trong hình sau:

Xem lời giải >>
Bài 23 :

Cho một tam giác vuông có hai  cạnh góc vuông là \(a\), \(b\) và cạnh huyền là \(c\).

- Lấy một tờ bìa lớn, cắt tám hình tam giác vuông bằng tam giác vuông đã cho và cắt hai hình vuông lớn có cùng có cạnh bằng \(a + b\).

- Đặt bốn tam giác vuông lên hình vuông thứ nhất trong Hình 1a. Phần bìa không bị che lấp gồm hai hình vuông có cạnh lần lượt là \(a\)\(b\). Tính diện tích phần bìa đó là \(a\)\(b\).

- Đặt bốn tam giác vuông còn lại lên hình vuông thứ hai như trong Hình 1b. Phần bìa không bị che lấp là hình vuông có cạnh là \(c\). Tính diện tích phần bìa đó theo \(c\).

- Rút ra kết luận về quan hệ giữa \({a^2} + {b^2}\)\({c^2}\).

 

Xem lời giải >>
Bài 24 :

Tính độ dài cạnh \(EF\), \(MN\) của các tam giác vuông  trong hình 3.

Xem lời giải >>
Bài 25 :

Một chiếc ti vi màn hình phẳng có chiều rộng và chiều dài đo được lần lượt là \(72\)cm và \(120\)cm. Tính độ dài đường chéo của màn hình chiếc ti vi đó theo đơn vị inch (biết 1 inch \( \approx \)\(2,54\)cm).

Xem lời giải >>
Bài 26 :

a) Nam dự định làm một cái êke từ ba thanh nẹp gỗ. Nam đã có hai thanh làm hai cạnh góc vuông dài \(6\)cm và \(8\)cm. Hỏi thanh nẹp còn lại Nam phải làm có độ dài bao nhiêu? (Giả sử các mối nối không đáng kể).

b) Một khung gỗ \(ABCD\) (Hình 6) được tạo thành từ \(5\) thanh nẹp có độ dài như sau: \(AB = CD = 36\)cm; \(BC = AD = 48\)cm; \(AC = 60\)cm. Chứng minh rằng \(\widehat {ABC}\)\(\widehat {ADC}\) là các góc vuông.

 

Xem lời giải >>
Bài 27 :

Cho tam giác \(ABC\) vuông tại \(A\).

a) Tính độ dài cạnh \(BC\) nếu biết \(AB = 7\)cm, \(AC = 24\)cm.

b) Tính độ dài cạnh \(AB\) biết \(AC = 2\)cm, \(BC = \sqrt {13} \)cm.

c) Tính độ dài cạnh \(AC\) nếu biết \(BC = 25\)cm, \(AB = 15\)cm.

Xem lời giải >>
Bài 28 :

Lần lượt tính độ dài các cạnh huyền \(a\), \(b\), \(c\), \(d\) của các tam giác vuông trong Hình 12. Hãy dự đoán kết quả của các cạnh huyền còn lại.

 

Xem lời giải >>
Bài 29 :

Quan sát Hình 1, bạn Đan khẳng định: Diện tích của hình vuông lớn nhất bằng tổng diện tích của hai hình vuông còn lại.

Bạn Đan đã dựa vào kiến thức nào để đưa ra khẳng định trên?

Xem lời giải >>
Bài 30 :

Thực hiện các hoạt động sau:

a) Vẽ và cắt giấy để có 4 hình tam giác vuông như nhau với độ dài cạnh huyền là a, độ dài hai cạnh góc vuông là b và c, trong đó a, b, c có cùng đơn vị độ dài (Hình 2)

b) Vẽ hình vuông ABCD có cạnh là b + c như Hình 3. Đặt hình 4 tam giác vuông đã cắt ở câu a lên hình vuông ABCD vừa vẽ, phần chưa bi che đi là hình vuông MNPQ với đọ dài cạnh a (Hình 4)

c) Gọi S1 là diện tích của hình vuông ABCD. Gọi S2 là tổng diện tích của hình vuông MNPQ và diện tích của 4 tam giác vuông AQM, BMN, CNP, DPQ. So sánh S1 và S2.

d) Dựa vào kết quả ở câu c, dự đoán mỗi liên hệ giữa a2 và b2 + c2.

Xem lời giải >>