Đề bài

Giải các phương trình sau:
a) \(\frac{{9x + 5}}{6} = 1 - \frac{{6 + 3x}}{8}\);
b) \(\frac{{x + 1}}{4} = \frac{1}{2} + \frac{{2x + 1}}{5}\);
c) \(\frac{{2\left( {x + 1} \right)}}{3} = \frac{3}{2} - \frac{{1 - 2x}}{4}\).

Phương pháp giải

- Chuyển một hạng tử từ vế này sang vế kia và đổi dấu hạng tử đó (Quy tấc chuyển vế);

- Nhân cả hai vế với cùng một số khác 0 (Quy tắc nhân với một số);

- Chia hai vế cho cùng một số khác 0 (Quy tắc chia cho một số).

Lời giải của GV HocTot.Nam.Name.Vn

a) \(\frac{{9x + 5}}{6} = 1 - \frac{{6 + 3x}}{8}\)

\(\frac{{4\left( {9x + 5} \right)}}{{24}} = \frac{{24}}{{24}} - \frac{{3\left( {6 + 3x} \right)}}{{24}}\)

\(36x + 20 = 24 - 18 - 9x\)

\(36x + 9x = 6 - 20\)

\(45x = - 14\)
\(x = \frac{{ - 14}}{{45}}\)

Vậy \(x = \frac{{ - 14}}{{45}}\)
b) \(\frac{{x + 1}}{4} = \frac{1}{2} + \frac{{2x + 1}}{5}\)

\(\frac{{5(x + 1)}}{20} = \frac{10}{20} + \frac{{4(2x + 1)}}{5}\)

\(5x + 5 = 10 + 8x + 4\)
\(5x - 8x = 14 - 5\)

\( - 3x = 9\)

\(x = - 3\)

Vậy \(x = - 3\)
c) \(\frac{{2\left( {x + 1} \right)}}{3} = \frac{3}{2} - \frac{{1 - 2x}}{4}\)
\(\frac{{8\left( {x + 1} \right)}}{{12}} = \frac{{18}}{{12}} - \frac{{3\left( {1 - 2x} \right)}}{{12}}\)
\(8x + 8 = 18 - 3 + 6x\)
\(8x - 6x = 15 - 8\)
\(2x = 7\)
\(x = \frac{7}{2}\)
Vậy \(x = \frac{7}{2}\)

Các bài tập cùng chuyên đề

Bài 1 :

Một tàu du lịch đi từ Hải Phòng đến Quảng Ninh với quang đường dài \(50{\rm{\;km}}/{\rm{h}}\). Vận tốc của dòng nước là \(3{\rm{\;km}}/{\rm{h}}\). Gọi vận tốc thực của tàu là \(x{\rm{\;km}}/{\rm{h}}\). Hãy biểu diễn thời gian tàu đi ngược dòng từ Quảng Ninh tới Hải Phòng.

Xem lời giải >>
Bài 2 :

Quan sát hình sau và chỉ ra một cặp tam giác đồng dạng:

Xem lời giải >>
Bài 3 :

Đáp án nào dưới đây không là phương trình bậc nhất một ẩn?

Xem lời giải >>
Bài 4 :

Điều kiện xác định của phân thức \(\frac{{\left( {x - 1} \right)\left( {x + 3} \right)}}{{{x^2} - 1}}\) là:

Xem lời giải >>
Bài 5 :

Chọn khẳng định sai.

Xem lời giải >>
Bài 6 :

Hai tam giác nào không đồng dạng khi biết độ dài các cạnh của hai tam giác lần lượt là:

Xem lời giải >>
Bài 7 :

Kết quả của phép chia \(\frac{{a - 2b}}{{16}}:\frac{{2a - 4b}}{{12}}\) bằng:

Xem lời giải >>
Bài 8 :

Nếu 2 tam giác \({\rm{ABC}}\) và \({\rm{DEF}}\) có \(\widehat A = \widehat D,\widehat C = \widehat F\) thì:

Xem lời giải >>
Bài 9 :

Tổng các nghiệm của hai phương trình \( - 6\left( {1,5 - 2x} \right) = 3\left( { - 15 + 2x} \right);5x + 10 = 0\) bằng:

Xem lời giải >>
Bài 10 :

Cho biết một nửa đàn bò đang gặm cỏ trên cánh đồng, \(\frac{1}{3}\) đàn bò đang nằm nghỉ gần đó, còn lại 4 con đang uống nước ở ao. Tính số bò hiện có trong đàn.

Xem lời giải >>
Bài 11 :

Cho biểu thức: \(B = \frac{1}{{x + 1}} - \frac{{{x^3} - x}}{{{x^2} + 1}} \cdot \left( {\frac{1}{{{x^2} + 2x + 1}} - \frac{1}{{{x^2} - 1}}} \right)\) (ĐKXĐ: \(\left. {x \ne  \pm 1} \right)\)

a) Rút gọn \(B\)

b) Tính giá trị của \(B\) tại \(x = - 2\)

c) Với giá trị nào của \(x\) thì \(B = 1\)

Xem lời giải >>
Bài 12 :

Tổng số học sinh khối 8 và khối 9 của một trường là 580 em, trong đó có \(256\) em là học sinh giỏi. Tính số học sinh của mỗi khối, biết rằng số học sinh giỏi khối 8 chiếm tỉ lệ \(40{\rm{\% }}\) số học sinh khối 8, số học sinh giỏi khối 9 chiếm tỉ lệ 48% số học sinh khối 9.

Xem lời giải >>
Bài 13 :

Cho \(\Delta ABC\) có các đường cao \({\rm{BD}}\) và \({\rm{CE}}\) cắt nhau tại \({\rm{H}}\). Chứng minh:
a) \(\Delta HBE\) đồng dạng với \(\Delta HCD\).
b) \(\widehat {HDE} = \widehat {HAE}\).

Xem lời giải >>
Bài 14 :

Cho \(\frac{a}{{b + c}} + \frac{b}{{c + a}} + \frac{c}{{a + b}} = 1\). Chứng minh \(\frac{{{a^2}}}{{b + c}} + \frac{{{b^2}}}{{c + a}} + \frac{{{c^2}}}{{a + b}} = 0\)

Xem lời giải >>