Đề bài

Cho góc nhọn \(xOy.\) Trên tia \(Ox\) lấy hai điểm \(A,C,\) trên tia \(Oy\)  lấy hai điểm \(B,D\) sao cho \(OA = OB,OC = OD\) (\(A\)  nằm giữa \(O\) và \(C,\)\(B\) nằm giữa \(O\) và \(D\) ). So sánh hai góc \(\widehat {CAD}\) và \(\widehat {CBD}.\)

  • A.

    \(\widehat {CBD} = \widehat {CAD}\)       

  • B.

    \(\widehat {CBD} < \widehat {CAD}\)

  • C.

    \(\widehat {CBD} > \widehat {CAD}\)

  • D.

    \(2.\widehat {CBD} = \widehat {CAD}\)

Phương pháp giải

+ Sử dụng tính chất hai tam giác bằng nhau ở ý trước suy ra hai góc tương ứng bằng nhau

+ Sau đó sử dụng tính chất hai góc kề bù hoặc góc ngoài để so sánh hai góc \(\widehat {CAD}\) và \(\widehat {CBD}.\)

Lời giải của GV HocTot.Nam.Name.Vn

Xét tam giác \(OAD\) và tam giác \(OBC\) có

\(OA = OB,\)

\(\widehat O\)chung,

\(OC = OD\)

\( \Rightarrow \)\(\Delta OAD = \Delta OBC\) ( c.g.c)

\( \Rightarrow \)\(\widehat {OBC} = \widehat {OAD}\) (hai góc tương ứng bằng nhau)

Lại có \(\widehat {OBC} + \widehat {CBD} = 180^\circ ;\,\widehat {OAD} + \widehat {DAC} = 180^\circ \) (hai góc kề bù)

Nên \(\widehat {CBD} = 180^\circ  - \widehat {OBC}\) và \(\widehat {CAD} = 180^\circ  - \widehat {OAD}\)  mà \(\widehat {OBC} = \widehat {OAD}\) (cmt)

\( \Rightarrow \) \(\widehat {CBD} = \widehat {CAD}.\)

Đáp án : A

Các bài tập cùng chuyên đề

Bài 1 :

Cho tam giác $ABC$  và tam giác $MHK$  có: $AB = MH$ , \(\widehat A = \widehat M\). Cần thêm một điều kiện gì để hai tam giác $ABC$  và $MHK$  bằng nhau theo trường hợp cạnh – góc – cạnh:

Xem lời giải >>
Bài 2 :

Cho tam giác $BAC$  và tam giác $KEF$  có $BA = EK,$ \(\widehat A = \widehat K\), $CA = KF.$ Phát biểu nào trong trong các phát biểu sau đây là đúng:

Xem lời giải >>
Bài 3 :

Cho tam giác $DEF$  và tam giác $HKG$  có $DE = HK$ , \(\widehat E = \widehat K\), $EF = KG.$ Biết \(\widehat D = {70^0}\). Số đo góc $H$ là:

Xem lời giải >>
Bài 4 :

Cho tam giác $ABC$ có \(\widehat A = {90^0}\), tia phân giác $BD$  của góc $B$ (\(D \in AC\)). Trên cạnh $BC$  lấy điểm $E$  sao cho $BE = BA.$ Hai góc nào sau đây bằng nhau?

Xem lời giải >>
Bài 5 :

Cho đoạn thẳng \(AB\), trên đường trung trực \(d\) của đoạn \(AB\)  lấy điểm \(M.\) So sánh \(AM\) và \(BM.\)

Xem lời giải >>
Bài 6 :

Cho tam giác $ABC$  có $M,N$ lần lượt là trung điểm của $AB,AC.$ Trên tia đối của tia $MC$  lấy $D$  sao cho $MD = MC$ . Trên tia đối của tia $NB$ lấy điểm $E$ sao cho $NE = NB.$

(I) \(\Delta AMD = \Delta BMC\)

(II) \(\Delta ANE = \Delta CNB\)

(III) $A,D,E$ thẳng hàng

(IV)  $A$ là trung điểm của đoạn thẳng $DE$

Số khẳng định đúng trong các khẳng định trên là

Xem lời giải >>
Bài 7 :

Cho hai đoạn thẳng \(AB\) và \(CD\) cắt nhau tại \(O\) là trung điểm của mỗi đoạn thẳng đó. Lấy \(E;\,F\) lần lượt là điểm thuộc đoạn \(AD\) và \(BC\) sao cho \(AE = BF.\) Cho \(OE = 2cm\), tính \(EF.\)

Xem lời giải >>
Bài 8 :

Cho tam giác \(ABC\) và tam giác \(NPM\)  có \(BC = PM;\,\widehat B = \widehat P\). Cần thêm một điều kiện gì để tam giác $MPN$ và tam giác $CBA$  bằng nhau theo trường hợp góc – cạnh – góc ?

Xem lời giải >>
Bài 9 :

Cho tam giác $ABC$  và tam giác $MNP$ có  $\widehat B = \widehat N = {90^ \circ }$, $AC = MP,$ \(\widehat C = \widehat M\) . Phát biểu nào trong các phát biểu sau đây là đúng:

Xem lời giải >>
Bài 10 :

Cho tam giác $DEF$  và tam giác $HKG$  có \(\widehat D = \widehat H\), \(\widehat E = \widehat K\), $DE = HK.$ Biết \(\widehat F = {80^0}\). Số đo góc $G$  là:

Xem lời giải >>
Bài 11 :

Cho tam giác $ABC$  và tam giác $DEF$ có $AB = DE,$ \(\widehat B = \widehat E\) , \(\widehat A = \widehat D\). Biết $AC = 6cm.$ Độ dài $DF$  là:

Xem lời giải >>
Bài 12 :

Cho tam giác $ABC$  vuông tại $A$  có $AB = AC.$ Qua $A$ kẻ đường thẳng $xy$  sao cho $B,C$ nằm cùng phía với $xy.$ Kẻ $BD$  và $CE$  vuông góc với $xy.$ Chọn câu đúng.

Xem lời giải >>
Bài 13 :

Cho tam giác $ABC,D$ là trung điểm của $AB.$  Đường thẳng qua $D$  và song song với $BC$  cắt $AC$  ở $E,$  đường thẳng qua $E$  và song song với $AB$  cắt $BC$  ở $F.$ Khi đó

Xem lời giải >>
Bài 14 :

Cho tam giác \(ABC\) có \(\widehat A = {60^0}.\) Tia phân giác của góc \(B\) cắt \(AC\) ở \(D,\) tia phân giác của góc \(C\) cắt \(AB\) ở \(E.\) Các tia phân giác đó cắt nhau ở \(I.\) Tính độ dài \(ID,\) biết \(IE = 2cm.\)

Xem lời giải >>
Bài 15 :

Cho hai đoạn thẳng \(AB,CD\) song song với nhau. Hai đoạn thẳng này chắn giữa hai đường thẳng song song \(AC,BD\). Chọn câu đúng:

Xem lời giải >>
Bài 16 :

Cho tam giác \(BAC\)  và tam giác \(KEF\)  có \(BA = EK,\) \(\widehat A = \widehat K\), \(CA = KF.\) Phát biểu nào trong trong các phát biểu sau đây là đúng:

Xem lời giải >>
Bài 17 :

Cho tam giác \(ABC\)  và tam giác \(MNP\)  có  \(\widehat A = \widehat {M,}\widehat B = \widehat N\) . Cần thêm điều kiện gì để tam giác \(ABC\)  và tam giác \(MNP\)  bằng nhau theo trường hợp góc – cạnh – góc:

Xem lời giải >>
Bài 18 :

Cho góc nhọn \(xOy,Oz\) là tia phân giác của góc đó. Qua điểm \(A\)  thuộc tia \(Ox\)  kẻ đường thẳng song song với \(Oy\) cắt \(Oz\) ở \(M.\) Qua \(M\)kẻ đường thẳng song song với \(Ox\) cắt \(Oy\) ở \(B.\) Chọn câu đúng.

Xem lời giải >>
Bài 19 :

Cho hai đoạn thẳng \(BD\)  và \(EC\)  vuông góc với nhau tại \(A\) sao cho \(AB = AE,AD = AC,AB < AC.\) Phát biểu nào trong các phát biểu sau đây là sai:

Xem lời giải >>
Bài 20 :

Cho tam giác \(ABC\)  có \(AB = AC = BC,\)  phân giác \(BD\) và \(CE\) cắt nhau tại \(O.\) Tính \(\widehat {BOC}.\)

Xem lời giải >>