Nội dung từ Loigiaihay.Com
Cho tam giác $ABC$ và tam giác $MNP$ có $\widehat B = \widehat N = {90^ \circ }$, $AC = MP,$ \(\widehat C = \widehat M\) . Phát biểu nào trong các phát biểu sau đây là đúng:
\(\Delta ABC = \Delta PMN\)
\(\Delta ACB = \Delta PNM\)
\(\Delta BAC = \Delta MNP\)
\(\Delta ABC = \Delta PNM\)
Sử dụng hệ quả của trường hợp bằng nhau thứ ba của tam giác: Nếu cạnh huyền và góc nhọn của tam giác này bằng cạnh huyền và góc nhọn của tam giác kia thì hai tam giác đó bằng nhau.
Xét tam giác $ABC$ và tam giác $MNP$ có $\widehat B = \widehat N = {90^ \circ }$, $AC = MP$, \(\widehat C = \widehat M\) , do đó \(\Delta ABC = \Delta PNM\) (cạnh huyền – góc nhọn)
Đáp án : D
Các bài tập cùng chuyên đề
Cho tam giác \(ABC\) và tam giác \(NPM\) có \(BC = PM;\,\widehat B = \widehat P\). Cần thêm một điều kiện gì để tam giác $MPN$ và tam giác $CBA$ bằng nhau theo trường hợp góc – cạnh – góc ?
Cho tam giác $ABC$ và tam giác $MNP$ có \(\widehat A = \widehat {M,}\widehat B = \widehat N\) . Cần thêm điểu kiện gì để tam giác $ABC$ và tam giác $MNP$ bằng nhau theo trường hợp góc – cạnh – góc:
Cho góc nhọn $xOy,Oz$ là tia phân giác của góc đó. Qua điểm $A$ thuộc tia $Ox$ kẻ đường thẳng song song với $Oy$ cắt $Oz$ ở $M.$ Qua $M$ kẻ đường thẳng song song với $Ox$ cắt $Oy$ ở $B.$ Chọn câu đúng.
Cho đoạn thẳng \(AB,O\) là trung điểm của \(AB.\) Trên cùng một nửa mặt phẳng bờ \(AB\) vẽ các tia \(Ax;By\) vuông góc với \(AB.\) Gọi \(C\) là một điểm thuộc tia \(Ax.\) Đường vuông góc với \(OC\) tại ${\rm{O}}$ cắt tia \(By\) ở \(D.\) Khi đó
Cho tam giác \(ABC\) có \(AB = AC.\) Trên các cạnh \(AB\) và \(AC\) lấy các điểm \(D,E\) sao cho \(AD = AE.\) Gọi \(K\) là giao điểm của \(BE\) và \(CD\). Chọn câu sai.
Cho tam giác $DEF$ và tam giác $HKG$ có \(\widehat D = \widehat H\), \(\widehat E = \widehat K\), $DE = HK.$ Biết \(\widehat F = {80^0}\). Số đo góc $G$ là:
Cho tam giác $ABC$ và tam giác $DEF$ có $AB = DE,$ \(\widehat B = \widehat E\) , \(\widehat A = \widehat D\). Biết $AC = 6cm.$ Độ dài $DF$ là:
Cho tam giác $ABC$ vuông tại $A$ có $AB = AC.$ Qua $A$ kẻ đường thẳng $xy$ sao cho $B,C$ nằm cùng phía với $xy.$ Kẻ $BD$ và $CE$ vuông góc với $xy.$ Chọn câu đúng.
Cho tam giác $ABC,D$ là trung điểm của $AB.$ Đường thẳng qua $D$ và song song với $BC$ cắt $AC$ ở $E,$ đường thẳng qua $E$ và song song với $AB$ cắt $BC$ ở $F.$ Khi đó
Cho tam giác \(ABC\) có \(\widehat A = {60^0}.\) Tia phân giác của góc \(B\) cắt \(AC\) ở \(D,\) tia phân giác của góc \(C\) cắt \(AB\) ở \(E.\) Các tia phân giác đó cắt nhau ở \(I.\) Tính độ dài \(ID,\) biết \(IE = 2cm.\)
Cho hai đoạn thẳng \(AB,CD\) song song với nhau. Hai đoạn thẳng này chắn giữa hai đường thẳng song song \(AC,BD\). Chọn câu đúng: