Đề bài

Cho tam giác $ABC$ có \(\widehat A = {90^0}\), tia phân giác $BD$  của góc $B$ (\(D \in AC\)). Trên cạnh $BC$  lấy điểm $E$  sao cho $BE = BA.$ Hai góc nào sau đây bằng nhau?

  • A.

    \(\widehat {EDC};\widehat {BAC}\)

  • B.

    \(\widehat {EDC};\widehat {ACB}\)

  • C.

    \(\widehat {EDC};\widehat {ABC}\)

  • D.

    \(\widehat {EDC};\widehat {EC{\rm{D}}}\)

Phương pháp giải

Sử dụng trường hợp bằng nhau thứ hai của tam giác để suy ra \(\widehat {BED} = \widehat {BAD} = 90^\circ \) và lập luận để chỉ ra \(\widehat {EDC} = \widehat {ABC}.\)

Lời giải của GV HocTot.Nam.Name.Vn

Xét hai tam giác $BDA$  và $BDE$  có:$BA = BE\left( {gt} \right),$ \(\widehat {{B_1}} = \widehat {{B_2}}\) (do $BD$ là tia phân giác của góc B);

$BD$ là cạnh chung. Suy ra \(\Delta BDA = \Delta BDE\) (c.g.c) 

Suy ra \(\widehat {BED} = \widehat {BAD} = {90^ \circ }\) (hai góc tương ứng)

Trong các tam giác $ABC$ và $EDC$ vuông ở $A$ và $E,$ ta có:

\(\widehat {ABC} + \widehat C = {90^ \circ }\)  và \(\widehat {EDC} + \widehat C = {90^ \circ }\), suy ra \(\widehat {EDC} = \widehat {ABC}\).

Đáp án : C

Các bài tập cùng chuyên đề

Bài 1 :

Cho tam giác $ABC$  và tam giác $MHK$  có: $AB = MH$ , \(\widehat A = \widehat M\). Cần thêm một điều kiện gì để hai tam giác $ABC$  và $MHK$  bằng nhau theo trường hợp cạnh – góc – cạnh:

Xem lời giải >>
Bài 2 :

Cho tam giác $BAC$  và tam giác $KEF$  có $BA = EK,$ \(\widehat A = \widehat K\), $CA = KF.$ Phát biểu nào trong trong các phát biểu sau đây là đúng:

Xem lời giải >>
Bài 3 :

Cho hai đoạn thẳng $BD$  và $EC$  vuông góc với nhau tại $A$ sao cho $AB = AE,AD = AC,AB < AC.$ Phát biểu nào trong các phát biểu sau đây là sai:

Xem lời giải >>
Bài 4 :

Cho tam giác $DEF$  và tam giác $HKG$  có $DE = HK$ , \(\widehat E = \widehat K\), $EF = KG.$ Biết \(\widehat D = {70^0}\). Số đo góc $H$ là:

Xem lời giải >>
Bài 5 :

Cho đoạn thẳng \(AB\), trên đường trung trực \(d\) của đoạn \(AB\)  lấy điểm \(M.\) So sánh \(AM\) và \(BM.\)

Xem lời giải >>
Bài 6 :

Cho tam giác $ABC$  có $M,N$ lần lượt là trung điểm của $AB,AC.$ Trên tia đối của tia $MC$  lấy $D$  sao cho $MD = MC$ . Trên tia đối của tia $NB$ lấy điểm $E$ sao cho $NE = NB.$

(I) \(\Delta AMD = \Delta BMC\)

(II) \(\Delta ANE = \Delta CNB\)

(III) $A,D,E$ thẳng hàng

(IV)  $A$ là trung điểm của đoạn thẳng $DE$

Số khẳng định đúng trong các khẳng định trên là

Xem lời giải >>
Bài 7 :

Cho hai đoạn thẳng \(AB\) và \(CD\) cắt nhau tại \(O\) là trung điểm của mỗi đoạn thẳng đó. Lấy \(E;\,F\) lần lượt là điểm thuộc đoạn \(AD\) và \(BC\) sao cho \(AE = BF.\) Cho \(OE = 2cm\), tính \(EF.\)

Xem lời giải >>
Bài 8 :

Cho tam giác \(ABC\) có \(\widehat A = {90^0},M\) là trung điểm \(AC.\) Trên tia đối của tia \(MB\) lấy \(K\) sao cho \(MK = MB.\) Chọn câu đúng nhất:

Xem lời giải >>