Giải bài 1 trang 112 SGK Giải tích 12Tính các tích phân sau: Video hướng dẫn giải Tính các tích phân sau: LG a \(\int_{\frac{-1}{2}}^{\frac{1}{2}}\sqrt[3]{ (1-x)^{2}}dx\) Phương pháp giải: Sử dụng công thức nguyên hàm mở rộng \(\int\limits_{}^{} {{{\left( {ax + b} \right)}^n}dx} = \dfrac{1}{a}\dfrac{{{{\left( {ax + b} \right)}^{n + 1}}}}{{n + 1}} + C\) Lời giải chi tiết: \(\begin{array}{l} \,\,\,\int\limits_{ - \frac{1}{2}}^{\frac{1}{2}} {\sqrt[3]{{{{\left( {1 - x} \right)}^2}}}dx} = \int\limits_{ - \frac{1}{2}}^{\,\frac{1}{2}} {{{\left( {1 - x} \right)}^{\frac{2}{3}}}dx} \\ = \left. {\frac{1}{{ - 1}}.\frac{{{{\left( {1 - x} \right)}^{\frac{2}{3} + 1}}}}{{\frac{2}{3} + 1}}} \right|_{ - \frac{1}{2}}^{\frac{1}{2}}\\= \left. { - 1.\frac{{{{\left( {1 - x} \right)}^{\frac{5}{3}}}}}{{\frac{5}{3}}}} \right|_{ - \frac{1}{2}}^{\frac{1}{2}} \\ = \left. { - \frac{3}{5}{{\left( {1 - x} \right)}^{\frac{5}{3}}}} \right|_{ - \frac{1}{2}}^{\frac{1}{2}}\\= - \frac{3}{5}.\left[ {{{\left( {\frac{1}{2}} \right)}^{\frac{5}{3}}} - {{\left( {\frac{3}{2}} \right)}^{\frac{5}{3}}}} \right]\\= - \frac{3}{5}\left[ {\frac{1}{{\sqrt[3]{{{2^5}}}}} - \frac{{\sqrt[3]{{{3^5}}}}}{{\sqrt[3]{{{2^5}}}}}} \right] \\= - \frac{3}{5}\left[ {\frac{1}{{\sqrt[3]{{{2^3}{{.2}^2}}}}} - \frac{{\sqrt[3]{{{3^3}{{.3}^2}}}}}{{\sqrt[3]{{{2^3}{{.2}^2}}}}}} \right]\\= - \frac{3}{5}\left[ {\frac{1}{{2\sqrt[3]{4}}} - \frac{{3\sqrt[3]{9}}}{{2\sqrt[3]{4}}}} \right] \\= \frac{3}{{10\sqrt[3]{4}}}\left( {3\sqrt[3]{9} - 1} \right)\end{array}\) LG b \(\int_{0}^{\frac{\pi}{2}}sin(\dfrac{\pi}{4}-x)dx\) Phương pháp giải: Sử dụng công thức nguyên hàm mở rộng: \(\int\limits_{}^{} {\sin \left( {ax + b} \right)dx} \)\( = - \dfrac{1}{a}\cos \left( {ax + b} \right) + C\) Lời giải chi tiết: \(\int\limits_0^{\frac{\pi }{2}} {\sin \left( {\frac{\pi }{4} - x} \right)dx} \) \( = - \frac{1}{{ - 1}}\left. {\cos \left( {\frac{\pi }{4} - x} \right)} \right|_0^{\frac{\pi }{2}}\) \(= \left. {\cos \left( {\frac{\pi }{4} - x} \right)} \right|_0^{\frac{\pi }{2}}\) \( = \cos \left( { - \frac{\pi }{4}} \right) - \cos \frac{\pi }{4} = 0\) LG c \(\int_{\frac{1}{2}}^{2}\dfrac{1}{x(x+1)}dx\) Phương pháp giải: Sử dụng phân tích: \(\dfrac{1}{{x\left( {x + 1} \right)}} = \dfrac{1}{x} - \dfrac{1}{{x + 1}}\) sau đó sử dụng công thức tính nguyên hàm mở rộng: \(\int\limits_{}^{} {\dfrac{1}{{ax + b}}dx} = \dfrac{1}{a}.\ln \left| {ax + b} \right| + C\). Lời giải chi tiết: Ta có: \(\frac{1}{{x\left( {x + 1} \right)}} \) \( = \frac{{x + 1 - x}}{{x\left( {x + 1} \right)}} = \frac{{x + 1}}{{x\left( {x + 1} \right)}} - \frac{x}{{x\left( {x + 1} \right)}}\) \(= \frac{1}{x} - \frac{1}{{x + 1}}\) \(\begin{array}{l}\Rightarrow \int\limits_{\frac{1}{2}}^2 {\frac{1}{{x\left( {x + 1} \right)}}dx} = \int\limits_{\frac{1}{2}}^2 {\left( {\frac{1}{x} - \frac{1}{{x + 1}}} \right)dx} \\= \left. {\left( {\ln \left| x \right| - \ln \left| {x + 1} \right|} \right)} \right|_{\frac{1}{2}}^2 = \left. {\ln \left| {\frac{x}{{x + 1}}} \right|} \right|_{\frac{1}{2}}^2\\= \ln \frac{2}{3} - \ln \frac{1}{3} = \ln \left( {\frac{2}{3}:\frac{1}{3}} \right) = \ln 2\end{array}\). LG d \(\int_{0}^{2}x(x+1)^{2}dx\) Phương pháp giải: Nhân đa thức và áp dụng công thức nguyên hàm: \(\int\limits_{}^{} {{x^n}dx} = \dfrac{{{x^{n + 1}}}}{{n + 1}} + C\). Lời giải chi tiết: \(\begin{array}{l}\,\,x{\left( {x + 1} \right)^2} = x\left( {{x^2} + 2x + 1} \right) \\= {x^3} + 2{x^2} + x\\\Rightarrow \int\limits_0^2 {x{{\left( {x + 1} \right)}^2}dx}\\ = \int\limits_0^2 {\left( {{x^3} + 2{x^2} + x} \right)dx} \\= \left. {\left( {\frac{{{x^4}}}{4} + 2\frac{{{x^3}}}{3} + \frac{{{x^2}}}{2}} \right)} \right|_0^2 \\= \left( {\frac{{{2^4}}}{4} + 2.\frac{{{2^3}}}{3} + \frac{{{2^2}}}{2}} \right) - 0\\= \frac{{34}}{3}\end{array}\) LG e \(\int_{\frac{1}{2}}^{2}\dfrac{1-3x}{(x+1)^{2}}dx\) Phương pháp giải: Phân tích đa thức trong tích phân dưới dạng : \(\dfrac{{1 - 3x}}{{{{\left( {x + 1} \right)}^2}}} = \dfrac{A}{{x + 1}} + \dfrac{B}{{{{\left( {x + 1} \right)}^2}}}\) và sử dụng các công thức nguyên hàm: \(\int\limits_{}^{} {\dfrac{{dx}}{{ax + b}}} = \dfrac{1}{a}\ln \left| {ax + b} \right| + C\) \(\int\limits_{}^{} {\dfrac{{dx}}{{{{\left( {ax + b} \right)}^2}}}} = \dfrac{1}{a}\dfrac{{ - 1}}{{ax + b}} + C\) Lời giải chi tiết: \(\begin{array}{l}\,\,\frac{{1 - 3x}}{{{{\left( {x + 1} \right)}^2}}} = \frac{{ - 3x - 3 + 4}}{{{{\left( {x + 1} \right)}^2}}}\\= \frac{{ - 3\left( {x + 1} \right) + 4}}{{{{\left( {x + 1} \right)}^2}}} = - \frac{3}{{x + 1}} + \frac{4}{{{{\left( {x + 1} \right)}^2}}}\\\Rightarrow \int\limits_{\frac{1}{2}}^2 {\frac{{1 - 3x}}{{{{\left( {x + 1} \right)}^2}}}dx} \\= \int\limits_{\frac{1}{2}}^2 {\left( { - \frac{3}{{x + 1}} + \frac{4}{{{{\left( {x + 1} \right)}^2}}}} \right)dx} \\= - 3\int\limits_{\frac{1}{2}}^2 {\frac{{dx}}{{x + 1}}} + 4\int\limits_{\frac{1}{2}}^2 {\frac{{dx}}{{{{\left( {x + 1} \right)}^2}}}} \\= - \left. {3\ln \left| {x + 1} \right|} \right|_{\frac{1}{2}}^2 - \left. {\frac{4}{{x + 1}}} \right|_{\frac{1}{2}}^2\\= - 3\left( {\ln 3 - \ln \frac{3}{2}} \right) - 4\left( {\frac{1}{3} - \frac{2}{3}} \right)\\= - 3\ln 2 + \frac{4}{3}\end{array}\) LG g \(\int_{\frac{-\pi}{2}}^{\frac{\pi}{2}}sin3xcos5xdx\) Phương pháp giải: Cách 1: Chứng minh hàm số \(f\left( x \right) = \sin 3x\cos 5x\) là hàm số lẻ và áp dụng công thức \(\int\limits_{ - a}^a {f\left( x \right)dx} = 0\) (Với f(x) là hàm số lẻ, \(a \in R\). Cách 2: Sử dụng công thức biến đổi tích thành tổng. Lời giải chi tiết: Cách 1: Đặt \(f(x) = sin3xcos5x\) ta có: \(f\left( { - x} \right) = \sin \left( { - 3x} \right)\cos \left( { - 5x} \right) \)\(= - \sin 3x\cos 5x = - f\left( x \right) \) \(\Rightarrow \) hàm số đã cho là hàm số lẻ, từ đó ta có: \(\int\limits_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {\sin 3x\cos 5xdx} = 0\). Cách 2: \(\begin{array}{l}\sin 3x\cos 5x \\ = \frac{1}{2}\left[ {\sin \left( {3x + 5x} \right) + \sin \left( {3x - 5x} \right)} \right] \\= \frac{1}{2}\left( {\sin 8x + \sin \left( { - 2x} \right)} \right)\\= \frac{1}{2}\left( {\sin 8x - \sin 2x} \right)\\\Rightarrow \int\limits_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {\sin 3x\cos 5xdx} \\= \frac{1}{2}\int\limits_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {\left( {\sin 8x - \sin 2x} \right)dx} \\= \frac{1}{2}\left. {\left( { - \frac{{\cos 8x}}{8} + \frac{{\cos 2x}}{2}} \right)} \right|_{ - \frac{\pi }{2}}^{\frac{\pi }{2}}\\= \frac{1}{2}\left( { - \frac{5}{8} - \left( { - \frac{5}{8}} \right)} \right) = 0\end{array}\) HocTot.Nam.Name.Vn
|