Bài 8.4 trang 54 SGK Toán 11 tập 2 - Cùng khám phá

Cho tứ diện \(ABCD\) có \(AC = a,BD = 3a\). \(M,N\) lần lượt là trung điểm của \(AD\) và \(BC\). Biết \(AC\) vuông góc với \(BD\), tính \(MN\).

Đề bài

Cho tứ diện \(ABCD\) có \(AC = a,BD = 3a\). \(M,N\) lần lượt là trung điểm của \(AD\) và \(BC\). Biết \(AC\) vuông góc với \(BD\), tính \(MN\).

Phương pháp giải - Xem chi tiết

Gọi \(P\) là trung điểm của \(CD\).

Chứng minh \(NP//BD,MP//AC\) suy ra \(\left( {AC,BD} \right) = \left( {MP,NP} \right) = \widehat {MPN}\)

Dựa vào \(AC \bot BD \Rightarrow \widehat {MPN} = {90^o}\)

Dựa vào \(\Delta MNP\) vuông tại \(P\) để tính \(MN\)

Quảng cáo

Lộ trình SUN 2026

Lời giải chi tiết

Gọi \(P\) là trung điểm của \(CD\)

\( \Rightarrow NP\) là đường trung bình của \(\Delta BCD \Rightarrow NP//BD,NP = \frac{1}{2}BD = \frac{{3a}}{2}\)

Vì \(P\) là trung điểm của \(CD\)

\( \Rightarrow MP\) là đường trung bình của \(\Delta ACD \Rightarrow MP//AC,NP = \frac{1}{2}AC = \frac{a}{2}\)

Vì \(NP//BD,MP//AC\) suy ra \(\left( {AC,BD} \right) = \left( {MP,NP} \right) = \widehat {MPN}\)

Mà \(AC \bot BD \Rightarrow \widehat {MPN} = {90^o}\)\( \Rightarrow \Delta MNP\) vuông tại \(P\)

\( \Rightarrow M{N^2} = M{P^2} + N{P^2} = {\left( {\frac{a}{2}} \right)^2} + {\left( {\frac{{3a}}{2}} \right)^2} = \frac{{10{a^2}}}{4}\)\( \Rightarrow MN = \frac{{a\sqrt {10} }}{2}\)

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM; 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.

close