Bài 7 trang 63 Tài liệu dạy – học Toán 9 tập 1Giải bài tập Cho ba đường thẳng Đề bài Cho ba đường thẳng \(\left( {{d_1}} \right):y = 3x,\left( {{d_2}} \right):y = x + 2,\)\(\,\left( {{d_3}} \right):y = \left( {m - 3} \right)x + 2m + 1\). Tìm m để ba đường thẳng đồng quy. Phương pháp giải - Xem chi tiết Tìm tọa độ giao điểm của 2 đường thẳng \(\left( {{d_1}} \right)\) và \(\left( {{d_2}} \right)\) 3 đường thẳng \(\left( {{d_1}} \right)\) và \(\left( {{d_2}} \right),\left( {{d_3}} \right)\) đồng quy ta nếu tọa độ giao điểm của 2 đường thẳng \(\left( {{d_1}} \right)\) và \(\left( {{d_2}} \right)\) phải thỏa mãn phương trình đường thẳng \(\left( {{d_3}} \right)\) Lời giải chi tiết Tọa độ giao điểm của 2 đường thẳng \(\left( {{d_1}} \right);\left( {{d_2}} \right)\) là nghiệm của hệ phương trình \(\left\{ \begin{array}{l}y = 3x\\y = x + 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 1\\y = 3\end{array} \right. \Rightarrow A\left( {1;3} \right)\) Để 3 đường thẳng trên đồng quy thì điểm A phải thuộc vào đường thẳng \(\left( {{d_3}} \right)\) tức là: \(3 = \left( {m - 3} \right).1 + 2m + 1 \Leftrightarrow m = \dfrac{5}{3}\) Vậy với \(m = \dfrac{5}{3}\)thì 3 đường thẳng trên đồng quy. HocTot.Nam.Name.Vn
>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link
|