Bài 69 trang 133 Sách bài tập Hình học lớp 12 Nâng caoTính khoảng cách giữa các cặp đường thẳng sau :
Lựa chọn câu để xem lời giải nhanh hơn
Tính khoảng cách giữa các cặp đường thẳng sau : LG a \(\eqalign{\;{d_1}:\left\{ \matrix{ x = 1 + t \hfill \cr y = - 1 - t \hfill \cr z = 1 \hfill \cr} \right.,{d_2}:\left\{ \matrix{ x = 2 - 3{t'} \hfill \cr y = - 2 + 3{t'} \hfill \cr z = 3{t'}. \hfill \cr} \right. \cr} \) Lời giải chi tiết: Đường thẳng d1 đi qua điểm Mo( 1 ; -1 ; 1) và có vectơ chỉ phương \(\overrightarrow u \) = (1 ; -1 ; 0). Đường thẳng d2 đi qua điểm M'o (2 ; - 2 ; 0) và có vectơ chỉ phương \(\overrightarrow {u '}\) = (-1 ; 1 ; 1). Vì \(\overrightarrow {{M_0}M{'_0}} \) = (1 ; -1 ; -1) = \( - \overrightarrow {u'} \) nên hai đường thẳng đó cắt nhau, do đó khoảng cách giữa chúng bằng 0. LG b \(\eqalign{\;{d_1}:{{x - 1} \over 2} = {{y + 3} \over 1} = {{z - 4} \over -2},\cr&\;\;\;\;\;{d_2}:{{x + 2} \over { - 4}} = {{y - 1} \over { - 2}} = {{z + 1} \over 4}} \) Lời giải chi tiết: Hai đường thẳng song song. Khoảng cách giữa chúng bằng khoảng cách từ một điểm thuộc đường thẳng này tới đường thẳng kia. LG c \(\eqalign{\;{d_1}:{{x - 1} \over 1} = {{y - 2} \over 2} = {{z - 3} \over 3},\cr&\;\;\;\;\;\;{d_2}:\left\{ \matrix{ x = 2 - t \hfill \cr y = - 1 + t \hfill \cr z = t \hfill \cr} \right.; \cr} \) Lời giải chi tiết: Cách 1. Đường thẳng d1 đi qua Mơ( 1 ; 2 ; 3) và có vectơ chỉ phương \(\overrightarrow {{u_1}} \) (1 ; 2 ; 3). Đường thẳng d2 đi qua M'0 (2 ; -1 ; 0) và có vectơ chỉ phương \(\overrightarrow {{u_2}} \) (-1 ; 1 ; 1). Khoảng cách giữa d1 và d2 là \(d({d_1},{d_2}) = {{\left| {\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right].\overrightarrow {{M_0}M{'_0}} } \right|} \over {\left| {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right|}} = {{\sqrt {26} } \over {13}}.\) Cách 2. Gọi (\(\alpha \)) là mặt phẳng chứa d2 và song song với d1. Khi đó, (\(\alpha \)) đi qua M'0 (2 ; - 1 ; 0) và có vectơ pháp tuyến \(\overrightarrow n = \left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right]\) = (-1 ; -4 ; 3). Phương trình của mp(\(\alpha \)) là : x + 4y - 3z + 2 = 0 Vậy \(d({d_1},{d_2}) = d({M_0},(\alpha )) = {{\left| {1 + 4.2 - 3.3 + 2} \right|} \over {\sqrt {1 + 16 + 9} }} = {{\sqrt {26} } \over {13}}.\) LG d \({d_1}\) là giao tuyến của hai mặt phẳng \(\left( \alpha \right):2x + 3y - 4 = 0\) và \( \left( {\alpha '} \right):y + z - 4 = 0; \) \( {d_2}:\left\{ \matrix{ x = 1 + 3t \hfill \cr y = 2 + t \hfill \cr z = - 1 + 2t \hfill \cr} \right. \) Lời giải chi tiết: \(d({d_1},{d_2}) = \sqrt {13} .\) HocTot.Nam.Name.Vn
|