Bài 72 trang 134 Sách bài tập Hình học lớp 12 Nâng cao

a)Tìm tọa độ hình chiếu

Lựa chọn câu để xem lời giải nhanh hơn

LG a

Tìm tọa độ hình chiếu ( vuông góc ) của điểm \({M_0}(1; - 1;2)\) trên mặt phẳng

\(\left( \alpha  \right):2x - y + 2z + 12 = 0.\)

Lời giải chi tiết:

Phương trình của đường thẳng đi qua điểm M0(1 ; -1 ; 2) và vuông góc với mặt phẳng (\(\alpha \)) là :

             \(\left\{ \matrix{  x = 1 + 2t \hfill \cr  y =  - 1 - t \hfill \cr  z = 2 + 2t. \hfill \cr}  \right.\)

Gọi M'0(x ; y ; z) là hình chiếu của M0 trên mp(\(\alpha \)). Toạ độ của M'0 thoả mãn hệ :

    \(\left\{ \matrix{  x = 1 + 2t \hfill \cr  y =  - 1 - 2t \hfill \cr  z = 2 + 2t \hfill \cr  2x - y + 2z + 12 = 0 \hfill \cr}  \right. \Rightarrow t =  - {{19} \over 9}.\) 

Vậy  \(M{'_0} = \left( { - {{29} \over 9};{{10} \over 9}; - {{20} \over 9}} \right).\)

LG b

Cho bốn điểm A(4;1;4), B(3;3;1), C(1;5;5), D(1;1;1). Tìm tọa độ hình chiếu của D trêm mặt phẳng (ABC).

Lời giải chi tiết:

\(\overrightarrow {AB} \) = (-1 ; 2 ; -3), \(\overrightarrow {AC} \) = (-3 ; 4 ; 1)

\(\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right]\)= (14 ; 10 ; 2).

Lấy một vectơ pháp tuyến của mp(ABC) là \(\overrightarrow n \)= (7 ; 5 ; 1), ta có phương trình của mặt phẳng (ABC):

            7x + 5y + z - 37 = 0. 

Đường thẳng đi qua D và vuông góc với mp(ABC) có phương trình :

              \(\left\{ \matrix{  x = 1 + 7t \hfill \cr  y = 1 + 5t \hfill \cr  z = 1 + t. \hfill \cr}  \right.\)

Toạ độ hình chiếu D’ của D trên mp(ABC) thoả mãn hệ

              \(\left\{ \matrix{  x = 1 + 7t \hfill \cr  y = 1 + 5t \hfill \cr  z = 1 + t \hfill \cr  7x + 5y + z - 37 = 0. \hfill \cr}  \right.\)

Suy ra D’ = \(\left( {{{81} \over {25}};{{13} \over 5};{{13} \over {25}}} \right).\)

LG c

Cho ba điểm A(1;1;2), B(-2;1;-1), C(2;-2;-1). Tìm tọa độ hình chiếu của gốc O trên mặt mp(ABC).

Lời giải chi tiết:

Tương tự ta có hình chiếu của O trên (ABC) là:

\(\left( {{3 \over {34}};{2 \over {17}}; - {3 \over {34}}} \right).\)

HocTot.Nam.Name.Vn

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close