Bài 5 trang 48 SGK Toán 11 tập 1 - Cánh diềuCho dãy số dương \(\left( {{u_n}} \right)\). Chứng minh rằng dãy số \(\left( {{u_n}} \right)\) là dãy số tăng khi và chỉ khi \(\frac{{{u_{n + 1}}}}{{{u_n}}} > 1\) với mọi \(n \in {\mathbb{N}^*}\). Tổng hợp đề thi học kì 2 lớp 11 tất cả các môn - Cánh diều Toán - Văn - Anh - Lí - Hóa - Sinh Đề bài Cho dãy số dương \(\left( {{u_n}} \right)\). Chứng minh rằng dãy số \(\left( {{u_n}} \right)\) là dãy số tăng khi và chỉ khi \(\frac{{{u_{n + 1}}}}{{{u_n}}} > 1\) với mọi \(n \in {\mathbb{N}^*}\). Phương pháp giải - Xem chi tiết Dựa vào kiến thức đã học để chứng minh Lời giải chi tiết Ta có: \(\begin{array}{l}\frac{{{u_{n + 1}}}}{{{u_n}}} > 1\,\,\,\forall n \in {\mathbb{N}^*}\\ \Leftrightarrow {u_{n + 1}} > {u_n}\,\,\,\forall n \in {\mathbb{N}^*}\end{array}\) => Luôn đúng
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM; 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
|