Bài 5 trang 122 SGK Đại số và Giải tích 11Tính tổng S Đề bài Tính tổng \(S = -1 + \dfrac{1}{10}- \dfrac{1}{10^{2}} + ... + \dfrac{(-1)^{n}}{10^{n-1}}+ ...\) Video hướng dẫn giải Phương pháp giải - Xem chi tiết Sử dụng công thức tổng của cấp số nhân lùi vô hạn \(S = \dfrac{{{u_1}}}{{1 - q}}\,\,\left( {\left| q \right| < 1} \right)\). Lời giải chi tiết Các số hạng của tổng lập thành cấp số nhân lùi vô hạn với \({u_1} = - 1\) và \(q = - \dfrac{1}{10}\) Vậy \(S = -1 +\dfrac{1}{10} - \dfrac{1}{10^{2}}+ ... + \dfrac{(-1)^{n}}{10^{n-1}} + ...\) \( = \dfrac{u_{1}}{1-q} \) \(= \dfrac{-1}{1 - (-\dfrac{1}{10})} = \dfrac{-10}{11}\). HocTot.Nam.Name.Vn
|