Bài 4 trang 72 SGK Toán 11 tập 1 - Cánh DiềuTính các giới hạn sau: a) (mathop {lim }limits_{x to + infty } frac{{9x + 1}}{{3x - 4}};) b) (mathop {lim }limits_{x to - infty } frac{{7x - 11}}{{2x + 3}};) c) (mathop {lim }limits_{x to + infty } frac{{sqrt {{x^2} + 1} }}{x};) d) (mathop {lim }limits_{x to - infty } frac{{sqrt {{x^2} + 1} }}{x};) e) (mathop {lim }limits_{x to {6^ - }} frac{1}{{x - 6}};) g) (mathop {lim }limits_{x to {7^ + }} frac{1}{{x - 7}}.) Tổng hợp đề thi học kì 1 lớp 11 tất cả các môn - Cánh diều Toán - Văn - Anh - Lí - Hóa - Sinh Đề bài Tính các giới hạn sau: a) \(\mathop {\lim }\limits_{x \to + \infty } \frac{{9x + 1}}{{3x - 4}};\) b) \(\mathop {\lim }\limits_{x \to - \infty } \frac{{7x - 11}}{{2x + 3}};\) c) \(\mathop {\lim }\limits_{x \to + \infty } \frac{{\sqrt {{x^2} + 1} }}{x};\) d) \(\mathop {\lim }\limits_{x \to - \infty } \frac{{\sqrt {{x^2} + 1} }}{x};\) e) \(\mathop {\lim }\limits_{x \to {6^ - }} \frac{1}{{x - 6}};\) g) \(\mathop {\lim }\limits_{x \to {7^ + }} \frac{1}{{x - 7}}.\) Phương pháp giải - Xem chi tiết - Sử dụng định lí về phép toán trên giới hạn hữu hạn của hàm số. - Sử dụng giới hạn cơ bản sau: \(\mathop {\lim }\limits_{x \to {a^ + }} \frac{1}{{x - a}} = + \infty ;\mathop {\lim }\limits_{x \to {a^ - }} \frac{1}{{x - a}} = - \infty \) Lời giải chi tiết a) \(\mathop {\lim }\limits_{x \to + \infty } \frac{{9x + 1}}{{3x - 4}} = \mathop {\lim }\limits_{x \to + \infty } \frac{{x\left( {9 + \frac{1}{x}} \right)}}{{x\left( {3 - \frac{4}{x}} \right)}} = \mathop {\lim }\limits_{x \to + \infty } \frac{{9 + \frac{1}{x}}}{{3 - \frac{4}{x}}} = \frac{{9 + 0}}{{3 - 0}} = 3\) b) \(\mathop {\lim }\limits_{x \to - \infty } \frac{{7x - 11}}{{2x + 3}} = \mathop {\lim }\limits_{x \to - \infty } \frac{{x\left( {7 - \frac{{11}}{x}} \right)}}{{x\left( {2 + \frac{3}{x}} \right)}} = \mathop {\lim }\limits_{x \to - \infty } \frac{{7 - \frac{{11}}{x}}}{{2 + \frac{3}{x}}} = \frac{{7 - 0}}{{2 + 0}} = \frac{7}{2}\) c) \(\mathop {\lim }\limits_{x \to + \infty } \frac{{\sqrt {{x^2} + 1} }}{x} = \mathop {\lim }\limits_{x \to + \infty } \frac{{x\sqrt {1 + \frac{1}{{{x^2}}}} }}{x} = \mathop {\lim }\limits_{x \to + \infty } \sqrt {1 + \frac{1}{{{x^2}}}} = \sqrt {1 + 0} = 1\) d) \(\mathop {\lim }\limits_{x \to - \infty } \frac{{\sqrt {{x^2} + 1} }}{x} = \mathop {\lim }\limits_{x \to - \infty } \frac{{ - x\sqrt {1 + \frac{1}{{{x^2}}}} }}{x} = \mathop {\lim }\limits_{x \to - \infty } - \sqrt {1 + \frac{1}{{{x^2}}}} = - \sqrt {1 + 0} = - 1\) e) Ta có: \(\left\{ \begin{array}{l}1 > 0\\x - 6 < 0,x \to {6^ - }\end{array} \right.\) Do đó, \(\mathop {\lim }\limits_{x \to {6^ - }} \frac{1}{{x - 6}} = - \infty \) g) Ta có: \(\left\{ \begin{array}{l}1 > 0\\x + 7 > 0,x \to {7^ + }\end{array} \right.\) Do đó, \(\mathop {\lim }\limits_{x \to {7^ + }} \frac{1}{{x - 7}} = + \infty \)
|