Giải bài 3 trang 140 SGK Giải tích 12Giải các phương trình sau trên tập hợp số phức: Video hướng dẫn giải Giải các phương trình sau trên tập hợp số phức: LG a a) \({z^4} + {z^2}-6= 0\); Phương pháp giải: Phương pháp giải phương trình \(a{z^4} + b{z^2} + c = 0\,\,\left( {a \ne 0} \right)\). Bước 1: Đặt \({z^2} = t\), đưa về phương trình bậc hai ẩn t. Bước 2: Giải phương trình bậc hai ẩn t: \(a{t^2} + bt + c = 0\). Bước 3: Từ nghiệm t, ta giải tìm nghiệm x bằng cách tìm căn bậc hai của t. Lời giải chi tiết: Đặt \(t = z^2\) , ta được phương trình \({t^2} + t - 6 = 0 \Leftrightarrow \left[ \begin{array}{l}t = 2\\t = - 3\end{array} \right.\) Khi \(t = 2 \Rightarrow {z^2} = 2 \Rightarrow z _{1,2}= \pm \sqrt 2 \) Khi \(t = - 3 \Rightarrow {z^2} = - 3 \Rightarrow z _{3,4}= \pm i\sqrt 3 \) Vậy phương trình có bốn nghiệm là: \(± \sqrt2\) và \(± i\sqrt3\). LG b b) \({z^4} + 7{z^2} + 10 = 0\) Lời giải chi tiết: Đặt \(t = z^2\) , ta được phương trình \({t^2} + 7t + 10 = 0 \Leftrightarrow \left[ \begin{array}{l}t = - 2\\t = - 5\end{array} \right.\) Khi \(t = -2 \Rightarrow {z^2} =- 2 \Rightarrow z_{1,2} = \pm i\sqrt 2 \) Khi \(t = - 5 \Rightarrow {z^2} = - 5 \Rightarrow z_{3,4} = \pm i\sqrt 5 \) Vậy phương trình có bốn nghiệm là: \(± i\sqrt2\) và \(± i\sqrt5\). HocTot.Nam.Name.Vn
|