Bài 3 trang 120 SGK Toán 11 tập 1 - Chân trời sáng tạo

Cho hai hình vuông \(ABCD\) và \(ABEF\) ở trong hai mặt phẳng khác nhau. Trên các đường chéo \(AC\) và \(BF\) lần lượt lấy các điểm \(M,N\) sao cho \(AM = BN\). Các đường thẳng song song với \(AB\) vẽ từ \(M,N\) lần lượt cắt \(AD,AF\) tại \(M',N'\).

Tổng hợp đề thi học kì 2 lớp 11 tất cả các môn - Chân trời sáng tạo

Toán - Văn - Anh - Lí - Hóa - Sinh

Đề bài

Cho hai hình vuông \(ABCD\) và \(ABEF\) ở trong hai mặt phẳng khác nhau. Trên các đường chéo \(AC\) và \(BF\) lần lượt lấy các điểm \(M,N\) sao cho \(AM = BN\). Các đường thẳng song song với \(AB\) vẽ từ \(M,N\) lần lượt cắt \(AD,AF\) tại \(M',N'\).

a) Chứng minh \(\left( {CBE} \right)\parallel \left( {ADF} \right)\).

b) Chứng minh \(\left( {DEF} \right)\parallel \left( {MNN'M'} \right)\).

Phương pháp giải - Xem chi tiết

‒ Sử dụng định lí Thalès trong tam giác.

‒ Sử dụng định lí 1: Nếu mặt phẳng \(\left( P \right)\) chứa hai đường thẳng \(a,b\) cắt nhau và hai đường thẳng đó cùng song song với mặt phẳng \(\left( Q \right)\) thì \(\left( P \right)\) song song với \(\left( Q \right)\).

Lời giải chi tiết

a) \(ABC{\rm{D}}\) là hình vuông \( \Rightarrow AD\parallel BC\)

Mà \(A{\rm{D}} \subset \left( {ADF} \right)\)

\( \Rightarrow BC\parallel \left( {A{\rm{D}}F} \right)\)

\(ABC{\rm{D}}\) là hình vuông \( \Rightarrow AF\parallel BE\)

Mà \(A{\rm{F}} \subset \left( {ADF} \right)\)

\( \Rightarrow BE\parallel \left( {A{\rm{D}}F} \right)\)

Ta có:

\(\left. \begin{array}{l}BC\parallel \left( {A{\rm{D}}F} \right)\\BE\parallel \left( {A{\rm{D}}F} \right)\\BC,BE \subset \left( {CBE} \right)\end{array} \right\} \Rightarrow \left( {CBE} \right)\parallel \left( {A{\rm{D}}F} \right)\)

b) Do \(ABCD\) và \(ABEF\) là hai hình vuông có chung cạnh \(AB\) nên các đường chéo \(AC,BF\) bằng nhau.

Theo đề bài ta có: \(AM = BN\)

\( \Rightarrow \)\(\frac{{AM}}{{AC}} = \frac{{BN}}{{BF}}\)

Ta có:

\(MM'\parallel C{\rm{D}} \Rightarrow \frac{{AM}}{{AC}} = \frac{{AM'}}{{A{\rm{D}}}}\)

\(NN'\parallel AB \Rightarrow \frac{{BN}}{{BF}} = \frac{{AN'}}{{AF}}\)

\(\left. \begin{array}{l} \Rightarrow \frac{{AM'}}{{A{\rm{D}}}} = \frac{{AN'}}{{AF}} \Rightarrow M'N'\parallel DF\\M'N' \subset \left( {MNN'M'} \right)\end{array} \right\} \Rightarrow DF\parallel \left( {MNN'M'} \right)\)

\(\left. \begin{array}{l}NN'\parallel EF\\{\rm{NN}}' \subset \left( {MNN'M'} \right)\end{array} \right\} \Rightarrow EF\parallel \left( {MNN'M'} \right)\)

\(\left. \begin{array}{l}DF\parallel \left( {MNN'M'} \right)\\EF\parallel \left( {MNN'M'} \right)\\C{\rm{D}},DF \subset \left( {DEF} \right)\end{array} \right\} \Rightarrow \left( {DEF} \right)\parallel \left( {MNN'M'} \right)\)

2K7 tham gia ngay group để nhận thông tin thi cử, tài liệu miễn phí, trao đổi học tập nhé!

close