Bài 29 trang 126 SGK Toán 8 tập 1Khi nối trung điểm của hai đáy hình thang, tại sao ta được hai hình thang có diện tích bằng nhau? Đề bài Khi nối trung điểm của hai đáy hình thang, tại sao ta được hai hình thang có diện tích bằng nhau? Video hướng dẫn giải Phương pháp giải - Xem chi tiết Diện tích hình thang bằng một nửa tích của tổng hai đáy với chiều cao. $$S = {1 \over 2}\left( {a + b} \right).h$$ Lời giải chi tiết Cho hình thang \(ABCD\). Gọi \(M, N\) lần lượt là trung điểm của hay đáy \(AB, CD\). Gọi \(h\) là chiều cao của hình thang \(AMND\) thì \(h\) cũng là chiều cao của hình thang \(BMNC\). Diện tích hình thang \(AMND\) là: \(S_{AMND}=\dfrac{1}2.(AM+DN).h\) (1) Diện tích hình thang \(BMNC\) là: \(S_{BMNC}=\dfrac{1}2.(BM+NC).h\) (2) Mà \(AM = MB\) (3) (do M là trung điểm AB) và \(DN = NC\) (4) (do N là trung điểm của DC) Từ (1), (2), (3) và (4) suy ra: \(S_{AMND}=S_{BMNC}\) HocTot.Nam.Name.Vn
|