Bài 24 trang 50 SGK Toán 9 tập 2Cho phương trình Đề bài Cho phương trình (ẩn \(x\)) \({x^2}-{\rm{ }}2\left( {m{\rm{ }}-{\rm{ }}1} \right)x{\rm{ }} + {\rm{ }}{m^2} = {\rm{ }}0\). a) Tính \(\Delta '\). b) Với giá trị nào của \(m\) thì phương trình có hai nghiệm phân biệt ? Có nghiệm kép ? Vô nghiệm ? Video hướng dẫn giải Phương pháp giải - Xem chi tiết Xét phương trình: \(a x^2 +2b'x+c=0 \, \, \, (a \neq 0).\) Có \(\Delta'=b'^2-ac.\) +) Nếu \(\Delta' > 0\) thì phương trình có hai nghiệm phân biệt: +) Nếu \(\Delta' < 0\) thì phương trình vô nghiệm. Lời giải chi tiết a) \({x^2}-{\rm{ }}2\left( {m{\rm{ }}-{\rm{ }}1} \right)x{\rm{ }} + {\rm{ }}{m^2} = {\rm{ }}0\) có \(a = 1, b = -2(m - 1), \, \, b' = -(m - 1), \, \, c{\rm{ }} = {\rm{ }}{m^2}.\) \(\Rightarrow \Delta '{\rm{ }} = {\rm{ }}{\left[ { - \left( {m{\rm{ }} - {\rm{ }}1} \right)} \right]^2}-{\rm{ }}{m^2} \\= {\rm{ }}{m^2}-{\rm{ }}2m{\rm{ }} + {\rm{ }}1{\rm{ }}-{\rm{ }}{m^2} = {\rm{ }}1{\rm{ }}-{\rm{ }}2m.\) b) Ta có \(\Delta' = 1 – 2m\) và \(a=1 \ne 0\) +) Phương trình có hai nghiệm phân biệt \( \Leftrightarrow \Delta ' > 0 \Leftrightarrow 1 - 2m > 0 \Leftrightarrow m < \dfrac{1}{2}.\) +) Phương trình có nghiệm kép \( \Leftrightarrow \Delta ' = 0 \Leftrightarrow 1 - 2m = 0 \Leftrightarrow m = \dfrac{1}{2}.\) +) Phương trình vô nghiệm \( \Leftrightarrow \Delta ' < 0 \Leftrightarrow 1 - 2m < 0 \Leftrightarrow m > \dfrac{1}{2}.\) HocTot.Nam.Name.Vn
|