Bài 2.27 trang 57 SGK Toán 11 tập 1 - Cùng khám pháMột cấp số nhân hữu hạn có 10 số hạng và công bội \(q = \frac{1}{2}\). Tổng các số hạng của cấp số nhân là 511,5. Số hạng đầu của cấp số nhân là Đề bài Một cấp số nhân hữu hạn có 10 số hạng và công bội \(q = \frac{1}{2}\). Tổng các số hạng của cấp số nhân là 511,5. Số hạng đầu của cấp số nhân là A. 512 B. 256 C. 128 D. 64 Phương pháp giải - Xem chi tiết Thay \(n = 10,q = \frac{1}{2}\) vào công thức \({S_n} = \frac{{{u_1}\left( {1 - {q^n}} \right)}}{{1 - q}}\) để tìm \({u_1}\) Lời giải chi tiết \(\begin{array}{l}{S_n} = \frac{{{u_1}\left( {1 - {q^n}} \right)}}{{1 - q}}\\ \Leftrightarrow 511,5 = \frac{{{u_1}\left[ {1 - {{\left( {\frac{1}{2}} \right)}^{10}}} \right]}}{{1 - \frac{1}{2}}}\\ \Leftrightarrow {u_1} = 256\end{array}\) Chọn đáp án B.
|