Bài 2.21 trang 57 SGK Toán 11 tập 1 - Cùng khám phá

Dãy số \(\left( {{u_n}} \right)\) được xác định bởi: \(\left\{ \begin{array}{l}{u_1} = 15;{u_2} = 9\\{u_{n + 2}} = {u_n} - {u_{n + 1}},\forall n \ge 1\end{array} \right.\).

Đề bài

Dãy số \(\left( {{u_n}} \right)\) được xác định bởi: \(\left\{ \begin{array}{l}{u_1} = 15;{u_2} = 9\\{u_{n + 2}} = {u_n} - {u_{n + 1}},\forall n \ge 1\end{array} \right.\). Số hạng thứ sáu của dãy số là

A. 0

B. 6

C. 3

D. 9

Phương pháp giải - Xem chi tiết

Thay \(n = 1,2,3,4\) lần lượt vào công thức truy hồi để tính.

Lời giải chi tiết

\({u_1} = 15;{u_2} = 9;{u_3} = 15 - 9 = 6;{u_4} = 9 - 6 = 3;{u_5} = 6 - 3 = 3;{u_6} = 3 - 3 = 0\)

Chọn đáp án A.

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close