Bài 1.15 trang 30 SGK Toán 11 tập 1 - Kết nối tri thức

Xét tính chẵn lẻ của các hàm số sau: a) (y = sin 2x + tan 2x);

Đề bài

Xét tính chẵn lẻ của các hàm số sau:

a) \(y = \sin 2x + \tan 2x\);

b) \(y = \cos x + {\sin ^2}x\);

c) \(y = \sin x\cos 2x\);

d) \(y = \sin x + \cos x\).

Phương pháp giải - Xem chi tiết

Cho hàm số y = f(x) liên tục và xác định trên khoảng (đoạn) K. Với mỗi \(x \in K\) thì \( - x \in K\).

- Nếu f(-x) = f(x) thì hàm số y = f(x) là hàm số chẵn trên tập xác định.

- Nếu f(-x) = -f(x) thì hàm số y = f(x) là hàm số lẻ trên tập xác định.

Lời giải chi tiết

a) Hàm số \(y = \sin 2x + \tan 2x\) có nghĩa khi \(tan 2x\) có nghĩa

\(\cos 2x \ne 0\;\; \Leftrightarrow 2x \ne \frac{\pi }{2}\;\;\;\; \Leftrightarrow x \ne \frac{\pi }{4} + \frac{{k\pi }}{2}\)

Vây tập xác định của hàm số là \(D = \mathbb{R}\;\backslash \left\{ {\frac{\pi }{4} + \frac{{k\pi }}{2}} \right\}\).

Do đó, nếu x thuộc tập xác định D thì –x cũng thuộc tập xác định D.

Ta có: \(f\left( { - x} \right) = \sin \left( { - 2x} \right) + \tan \left( { - 2x} \right) =  - \sin 2x - \tan 2x =  - \left( {\sin 2x + \tan 2x} \right) =  - f\left( x \right),\;\forall x \in D\).

Vậy \(y = \sin 2x + \tan 2x\) là hàm số lẻ.

b) Tập xác định của hàm số là \(D = \mathbb{R}\).

Do đó, nếu x thuộc tập xác định D thì –x cũng thuộc tập xác định D.

Ta có: \(f\left( { - x} \right) = \cos \left( { - x} \right) + {\sin ^2}\left( { - x} \right) = \cos x + {\sin ^2}x = f\left( x \right),\;\forall x \in D\)

Vậy \(y = \cos x + {\sin ^2}x\) là hàm số chẵn.

c) Tập xác định của hàm số là \(D = \mathbb{R}\).

Do đó, nếu x thuộc tập xác định D thì –x cũng thuộc tập xác định D.

Ta có: \(f\left( { - x} \right) = \sin \left( { - x} \right)\cos \left( { - 2x} \right) =  - \sin x.\cos 2x =  - f\left( x \right),\;\forall x \in D\)

Vậy \(y = \sin x\cos \;2x\) là hàm số lẻ.

d) Tập xác định của hàm số là \(D = \mathbb{R}\).

Do đó, nếu x thuộc tập xác định D thì –x cũng thuộc tập xác định D.

Ta có: \(f\left( { - x} \right) = \sin \left( { - x} \right) + \cos \left( { - x} \right) =  - \sin x + \cos x \ne \pm  f\left( x \right),\;\forall x \in D\)

Vậy \(y = \sin x + \cos x\) không là hàm số chẵn cũng không là hàm số lẻ.

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close