Trả lời câu hỏi 4 Bài 3 trang 41 Toán 9 Tập 2Giải phương trình (x-2)^2=7/2 bằng cách điền vào chỗ trống... Đề bài Giải phương trình \({\left( {x - 2} \right)^2} = \dfrac{7}{2}\) bằng cách điền vào các chỗ trống \(\left( {...} \right)\) trong các đẳng thức: \({\left( {x - 2} \right)^2} = \dfrac{7}{2} \Leftrightarrow x - 2 = ... \Leftrightarrow x = ...\) Vậy phương trình có hai nghiệm là: \({x_1} = ...;{x_2} = ...\) Video hướng dẫn giải Phương pháp giải - Xem chi tiết Giải phương trình về dạng \({\left( {f\left( x \right)} \right)^2} = a\left( {a \ge 0} \right) \Leftrightarrow \left[ \begin{array}{l}f\left( x \right) = \sqrt a \\f\left( x \right) = - \sqrt a \end{array} \right.\) Lời giải chi tiết Ta có \({\left( {x - 2} \right)^2} = \dfrac{7}{2} \Leftrightarrow x - 2 = \pm \sqrt {\dfrac{7}{2}} \\\Leftrightarrow x = 2 \pm \dfrac{{\sqrt {14} }}{2}\) Vậy phương trình có hai nghiệm là: \({x_1} = 2 + \dfrac{{\sqrt {14} }}{2};{x_2} = 2 - \dfrac{{\sqrt {14} }}{2}\) HocTot.Nam.Name.Vn
|