Lý thuyết tính chất của dãy tỉ số bằng nhauSố tỉ lệ: khi nói các số a, b, c tỉ lệ với các số 2,3 5 tức là ta có I. Các kiến thức cần nhớ Tính chất dãy tỉ số bằng nhau * Ta có \(\dfrac{a}{b} = \dfrac{c}{d} = \dfrac{{a + c}}{{b + d}} = \dfrac{{a - c}}{{b - d}}\) * Từ dãy tỉ số bằng nhau \(\dfrac{a}{b} = \dfrac{c}{d} = \dfrac{e}{f}\) ta suy ra: \(\dfrac{a}{b} = \dfrac{c}{d} = \dfrac{e}{f} = \dfrac{{a + c + e}}{{b + d + f}} = \dfrac{{a - c + e}}{{b - d + f}}\) Với điều kiện các tỉ số đều có nghĩa. Ví dụ: \(\dfrac{{10}}{6} = \dfrac{5}{3} = \dfrac{{10 + 5}}{{6 + 3}} = \dfrac{{15}}{9}\) \(\dfrac{{10}}{6} = \dfrac{5}{3} = \dfrac{{10 - 5}}{{6 -3}}\) * Mở rộng $\dfrac{a}{b} = \dfrac{c}{d} = \dfrac{{ma + nc}}{{mb + nd}} = \dfrac{{ma - nc}}{{mb - nd}}$ Ví dụ: \(\dfrac{{10}}{6} = \dfrac{5}{3} = \dfrac{{2.10 + 3.5}}{{2.6 + 3.3}} = \dfrac{{35}}{{21}}\) Chú ý: Khi nói các số \(x,\,y,\,z\) tỉ lệ với các số \(a,\,b,\,c\) tức là ta có \(\dfrac{x}{a} = \dfrac{y}{b} = \dfrac{z}{c}\). Ta cũng viết \(x:y:z = a:b:c\) II. Các dạng toán thường gặp Dạng 1: Tìm hai số $x;y$ biết tổng (hoặc hiệu) và tỉ số của chúng. Phương pháp giải: * Để tìm hai số \(x;y\) khi biết tổng $x + y = s$ và tỉ số \(\dfrac{x}{y} = \dfrac{a}{b}\) ta làm như sau Ta có \(\dfrac{x}{y} = \dfrac{a}{b} \Rightarrow \dfrac{x}{a} = \dfrac{y}{b}\) Áp dụng dãy tỉ số bằng nhau ta có : \(\dfrac{x}{a} = \dfrac{y}{b} = \dfrac{{x + y}}{{a + b}} = \dfrac{s}{{a + b}}\) Từ đó \(x = \dfrac{s}{{a + b}}.a;\,y = \dfrac{s}{{a + b}}.b\) . * Để tìm hai số \(x;y\) khi biết hiệu $x - y = p$ và tỉ số \(\dfrac{x}{y} = \dfrac{a}{b}\) ta làm như sau Ta có \(\dfrac{x}{y} = \dfrac{a}{b}\)\( \Rightarrow \dfrac{x}{a} = \dfrac{y}{b}\) Áp dụng dãy tỉ số bằng nhau ta có : \(\dfrac{x}{a} = \dfrac{y}{b} = \dfrac{{x - y}}{{a - b}} = \dfrac{p}{{a - b}}\) Từ đó \(x = \dfrac{p}{{a - b}}.a;\)\(y = \dfrac{p}{{a - b}}.b\) . Ví dụ: Tìm hai số \(x;y\) biết \(\frac{x}{3} = \frac{y}{5}\) và \(x + y = - 32\) Áp dụng dãy tỉ số bằng nhau ta có: \(\frac{x}{3} = \frac{y}{5} = \frac{{x + y}}{{3 + 5}} = \frac{{ - 32}}{8} = - 4\) Do đó \(\frac{x}{3} = - 4 \Rightarrow x = (-4).3 = - 12\) và \(\frac{y}{5} = - 4 \Rightarrow y = (-4).5 = - 20.\) Vậy \(x = - 12;y = - 20.\) Dạng 2: Chia một số thành các phần tỉ lệ với các số cho trước Phương pháp: Giả sử chia số \(P\) thành ba phần \(x,\,y,\,z\) tỉ lệ với các số \(a,b,c\), ta làm như sau: \(\dfrac{x}{a} = \dfrac{y}{b} = \dfrac{z}{c} = \dfrac{{x + y + z}}{{a + b + c}} = \dfrac{P}{{a + b + c}}\) Từ đó \(x = \dfrac{P}{{a + b + c}}.a;\,y = \dfrac{P}{{a + b + c}}.b\); \(z = \dfrac{P}{{a + b + c}}.c\). Dạng 3: Tìm hai số biết tổng và tỉ số của chúng Phương pháp: Tìm hai số \(x;\,y\) biết $x.y = P$ và \(\dfrac{x}{y} = \dfrac{a}{b}\) Cách 1: Ta có \(\dfrac{x}{y} = \dfrac{a}{b} \Rightarrow \dfrac{x}{a} = \dfrac{y}{b}\) Đặt \(\dfrac{x}{a} = \dfrac{y}{b} = k\) ta có \(x = ka;\,y = kb\) Nên \(x.y = ka.kb = {k^2}ab = P \)\(\Rightarrow {k^2} = \dfrac{P}{{ab}}\) Từ đó tìm được \(k\) sau đó tìm được \(x,y\). Cách 2: Ta có \(\dfrac{x}{y} = \dfrac{a}{b}\)\( \Rightarrow \dfrac{{{x^2}}}{{xy}} = \dfrac{a}{b}\) hay \(\dfrac{{{x^2}}}{P} = \dfrac{a}{b} \)\(\Rightarrow {x^2} = \dfrac{{Pa}}{b}\) từ đó tìm được \(x\) và \(y.\) Dạng 4: Chứng minh đẳng thức từ một tỉ lệ thức cho trước. Phương pháp: Áp dụng tính chất tỉ lệ thức và tính chất dãy tỉ số bằng nhau. Dạng 5: Bài toán về tỉ lệ thức Phương pháp: + Xác định mối quan hệ giữa các yếu tố của đề bài + Lập được tỉ lệ thức + Áp dụng tính chất dãy tỉ số bằng nhau để giải bài toán.
|