Lý thuyết hệ tọa độ trong không gian

Hệ tọa độ Đề-các trong không gian.


1. Hệ tọa độ trong không gian

Trong không gian cho ba trục tọa độ chung gốc OO, đôi một vuông góc với nhau xOx;yOy;zOz. Hệ ba trục tọa độ như vậy được gọi là hệ trục tọa độ Đề-các vuông góc Oxyz; O là gốc tọa tọa độ. Giả sử i,j,k lần lượt là các vectơ đơn vị trên các trục xOx,yOy,zOz (h. 52)

Với điểm M thuộc không gian Oxyz thì tồn tại duy nhất bộ số (x;y;z) để

OM=x.i+y.j+z.k,

bộ (x;y;z) được gọi là tọa độ của điểm M(x;y;z).

Trong không gian Oxyz cho vectơ a, khi đó a=a1i+a2j+a3k

Ta viết a(a1;a2;a3) và nói a có tọa độ (a1;a2;a3) .

2. Biểu thức tọa độ của các phép toán vectơ

Giả sử a(a1;a2;a3) và b = (b1;b2;b3), thì:

a+b =(a1+b1;a2+b2;a3+b3).

ab =(a1b1;a2b2;a3b3).

k.a =(ka1;ka2;ka3).

3. Tích vô hướng

Cho a(a1;a2;a3) và b (b1;b2;b3) thì tích vô hướng a.b =a1.b1+a2.b2+a3.b3

Ta có: |a|=a21+a22+a23.

Đặt φ=(^a,b) , 0 ≤ φ ≤ 1800  thì cosφ=a1b1+a2b2+a3b3a21+a22+a23b21+b22+b23 (với a ≠ 0b≠ 0)

4. Phương trình mặt cầu

Trong không gian Oxyz, mặt cầu (S) tâm I(a;b;c) bán kính R có phương trình chính tắc (xa)2+(yb)2+(zc)2=R2

Mặt cầu có phương trình tổng quát x2+y2+z2+2ax+2by+2cz+d=0 có tâm I(a;b;c) và bán kính R=a2+b2+c2d

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD - Click xem ngay) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.

close