Lý thuyết Dãy số - SGK Toán 11 Chân trời sáng tạo

1. Định nghĩa dãy số

Tổng hợp đề thi học kì 2 lớp 11 tất cả các môn - Chân trời sáng tạo

Toán - Văn - Anh - Lí - Hóa - Sinh

1. Định nghĩa dãy số

  • Dãy số vô hạn

- Hàm số u xác định trên tập các số nguyên dương Nđược gọi là một dãy số vô hạn (gọi tắt là dãy số), nghĩa là

u:NR

nun=u(n)

  Dãy số trên được kí hiệu là (un).

- Dãy số (un)được viết dưới dạng khai triển u1,u2,u3,...,un,...

- Số u1 là số hạng đầu; unlà số hạng thứ n và gọi là số hạng tổng quát của dãy số.

*Chú ý: Nếu nN,un=cthì (un)được gọi là dãy số không đổi.

  • Dãy số hữu hạn

Mỗi hàm số u xác định trên tập M={1;2;3;...;m},mN được gọi là một dãy số hữu hạn.Dạng khai triển của dãy số hữu hạn là u1,u2,u3,...,um.

Trong đó, số u1 gọi là số hạng đầu, umlà số hạng cuối.

2. Cách cho một dãy số

Một dãy số có thể cho bằng:

  • Liệt kê các số hạng (với các dãy hữu hạn).
  • Công thức của số hạng tổng quát un.
  • Phương pháp truy hồi:

- Cho số hạng thứ nhất u1 (hoặc một vài số hạng đầu tiên)

- Cho một công thức tính un theoun1 (hoặc theo vài số hạng đứng ngay trước nó).

  • Phương pháp mô tả.

3. Dãy số tăng, dãy số giảm

  • Dãy số (un) được gọi là dãy số tăng nếu ta có un+1>un,nN.
  • Dãy số (un) được gọi là dãy số giảm nếu ta có un+1<un,nN.

4. Dãy số bị chặn

  • Dãy số (un) được gọi là bị chặn trên nếu số M sao cho unM, nN.
  • Dãy số (un) được gọi là bị chặn dưới nếu số m sao cho unm, nN.
  • Dãy số (un) được gọi là bị chặn nếu nó vừa bị chặn trên vừa bị chặn dưới, tức là tồn tại các số m, M sao cho munM,nN.

 

 

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K8! chú ý! Mở đặt chỗ Lộ trình Sun 2026: Luyện thi chuyên sâu TN THPT, Đánh giá năng lực, Đánh giá tư duy tại Tuyensinh247.com (Xem ngay lộ trình). Ưu đãi -70% (chỉ trong tháng 3/2025) - Tặng miễn phí khoá học tổng ôn lớp 11, 2K8 xuất phát sớm, X2 cơ hội đỗ đại học. Học thử miễn phí ngay.

close