Lý thuyết cực trị của hàm sốCho hàm số y = f(x) liên tục trên khoảng (a ; b) và điểm x ∈ (a ; b). 1. Định nghĩa Cho hàm số \(y = f(x)\) liên tục trên khoảng \((a ; b)\) và điểm \(x_0 \in (a ; b).\) - Nếu tồn tại số \(h > 0\) sao cho \(f(x) < f(x_0), ∀x ∈ (x_0- h ; x_0+ h), x \neq x_0\) thì ta nói hàm số \(f\) đạt cực đại tại \(x_0.\) - Nếu tồn tại số \(h > 0\) sao cho \(f(x) > f(x_0), ∀x ∈ (x_0- h ; x_0+ h), x \neq x_0\) thì ta nói hàm số \(f\) đạt cực tiểu tại \(x_0.\) Chú ý: a) Cần phân biệt các các khái niệm: - Điểm cực trị \({x_0}\) của hàm số. - Giá trị cực trị của hàm số. - Điểm cực trị \(\left( {{x_0};{y_0}} \right)\) của đồ thị hàm số. b) Nếu \(y = f\left( x \right)\) có đạo hàm trên \(\left( {a;b} \right)\) và đạt cực trị tại \({x_0} \in \left( {a;b} \right)\) thì \(f'\left( {{x_0}} \right) = 0\). 2. Điều kiện đủ để hàm số có cực trị Định lí 1. Cho hàm số \(y = f(x)\) liên tục trên khoảng \(K = (x_0- h ; x_0+ h) (h > 0)\) và có đạo hàm trên \(K\) hoặc trên \(K{\rm{\backslash }}\left\{ {{\rm{ }}{x_0}} \right\}\) +) Nếu \(\left\{ \matrix{f'\left( x \right) > 0 \, | \, \forall \left( {{x_0} - h;\,\,{x_0}} \right) \hfill \cr f'\left( x \right) < 0 \, | \, \forall \left( {{x_0};\,\,{x_0} + h} \right) \hfill \cr} \right.\) thì \(x_0\) là điểm cực đại của hàm số +) Nếu \(\left\{ \matrix{f'\left( x \right) < 0 \, | \, \forall \left( {{x_0} - h;\,\,{x_0}} \right) \hfill \cr f'\left( x \right) > 0 \, | \, \forall \left( {{x_0};\,\,{x_0} + h} \right) \hfill \cr} \right.\) thì \(x_0\) là điểm cực tiểu của hàm số Hàm số có thể đạt cực trị tại những điểm mà tại đó đạo hàm không xác định.
Định lý 2: Giả sử \(y = f\left( x \right)\) có đạo hàm cấp 2 trong \(\left( {{x_0} - h;{x_0} + h} \right)\left( {h > 0} \right)\). a) Nếu \(\left\{ \begin{array}{l}f'\left( {{x_0}} \right) = 0\\f''\left( {{x_0}} \right) > 0\end{array} \right.\) thì \({x_0}\) là một điểm cực tiểu của hàm số. b) Nếu \(\left\{ \begin{array}{l}f'\left( {{x_0}} \right) = 0\\f''\left( {{x_0}} \right) < 0\end{array} \right.\) thì \({x_0}\) là một điểm cực đại của hàm số. 3. Quy tắc tìm cực trị của hàm sốPhương pháp: Có thể tìm cực trị của hàm số bởi một trong hai quy tắc sau: Quy tắc 1: (suy ra từ định lý 1) - Bước 1: Tìm tập xác định của hàm số. - Bước 2: Tính \(f'\left( x \right)\), tìm các điểm tại đó \(f'\left( x \right) = 0\) hoặc không xác định. - Bước 3: Lập bảng biến thiên và kết luận. + Tại các điểm mà đạo hàm đổi dấu từ âm sang dương thì đó là điểm cực tiểu của hàm số. + Tại các điểm mà đạo hàm đổi dấu từ dương sang âm thì đó là điểm cực đại của hàm số. Quy tắc 2: (suy ra từ định lý 2) - Bước 1: Tìm tập xác định của hàm số. - Bước 2: Tính \(f'\left( x \right)\), giải phương trình \(f'\left( x \right) = 0\) và kí hiệu \({x_1},...,{x_n}\) là các nghiệm của nó. - Bước 3: Tính \(f''\left( x \right)\) và \(f''\left( {{x_i}} \right)\). - Bước 4: Dựa và dấu của \(f''\left( {{x_i}} \right)\) suy ra điểm cực đại, cực tiểu: + Tại các điểm \({x_i}\) mà \(f''\left( {{x_i}} \right) > 0\) thì đó là điểm cực tiểu của hàm số. + Tại các điểm \({x_i}\) mà \(f''\left( {{x_i}} \right) < 0\) thì đó là điểm cực đại của hàm số.
|