Lý thuyết cộng, trừ số hữu tỉ

Khi chuyển một số hạng từ vế này sang vế kia của một đẳng thức ta phải đổi dấu số hạng đó

1. Cộng trừ số hữu tỉ

Viết hai số hữu tỉ \(x, y\) dưới dạng:

\(x =  \dfrac{a}{m} ,\; y = \dfrac{b}{m}\) (\( a, b, m ∈\mathbb Z, m > 0\))

Khi đó:

\(x + y =   \dfrac{a}{m} +  \dfrac{b}{m}= \dfrac{a + b}{m}\)

\(x - y = x + (-y) = \dfrac{a}{m} +\left( { - \dfrac{b}{m}} \right)\)\(\,= \dfrac{a - b}{m}\)

Ví dụ:  Tính \(\frac{{ - 5}}{{12}} + \frac{{ - 1}}{4}\)

Ta có:

\(\frac{{ - 5}}{{12}} + \frac{{ - 1}}{4} = \frac{ - 5}{12} + \frac{ (- 1).3}{4.3} =\frac{(-5)+ (-3)}{12} \)\(= \frac{{ - 8}}{{12}} = \frac{{ - 2}}{3}\)

2. Quy tắc " chuyển vế"

Khi chuyển một số hạng từ vế này sang vế kia của một đẳng thức ta phải đổi dấu số hạng đó

Tổng quát: Với mọi \(x, y , z ∈\mathbb Q\), ta có:

\(x + y = z \Rightarrow x = z-y\).

Ví dụ: Tìm \(x\) biết \(x + \frac{1}{2} = \frac{3}{4}\)

Ta có: 

\(x + \frac{1}{2} = \frac{3}{4}\)

\(x\,\, = \frac{3}{4} - \frac{1}{2}\)

\(x = \frac{3}{4} - \frac{2}{4}\)

\(x = \frac{1}{4}\)

HocTot.Nam.Name.Vn

Tham Gia Group Dành Cho 2K12 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close