Giải mục 3 trang 59, 60 SGK Toán 11 tập 1 - Chân trời sáng tạoCho cấp số nhân \(\left( {{u_n}} \right)\) có công bội \(q\). Đặt \({S_n} = {u_1} + {u_2} + ... + {u_n}\). Tổng hợp đề thi học kì 1 lớp 11 tất cả các môn - Chân trời sáng tạo Toán - Văn - Anh - Lí - Hóa - Sinh
Lựa chọn câu để xem lời giải nhanh hơn
Hoạt động 3 Cho cấp số nhân \(\left( {{u_n}} \right)\) có công bội \(q\). Đặt \({S_n} = {u_1} + {u_2} + ... + {u_n}\). a) So sánh \(q.{S_n}\) và \(\left( {{u_2} + {u_3} + ... + {u_n}} \right) + q.{u_n}\). b) So sánh \({u_1} + q.{S_n}\) và \({S_n} + {u_1}.{q^n}\). Phương pháp giải: Sử dụng công thức số hạng tổng quát của cấp số nhân có số hạng đầu \({u_1}\) và công bội \(q\) thì số hạng tổng quát là: \({u_n} = {u_1}.{q^{n - 1}},n \ge 2\). Lời giải chi tiết: a) Ta có: \(q.{S_n} = q.\left( {{u_1} + {u_2} + ... + {u_n}} \right) = {u_1}.q + {u_2}.q + ... + {u_n}.q = \left( {{u_2} + {u_3} + ... + {u_n}} \right) + q.{u_n}\) b) Ta có: \({u_1} + q.{S_n} = {u_1} + \left( {{u_2} + {u_3} + ... + {u_n}} \right) + q.{u_n} = \left( {{u_1} + {u_2} + {u_3} + ... + {u_n}} \right) + q.{u_n} = {S_n} + {u_1}.{q^n}\) Thực hành 3 Tính tổng \(n\) số hạng đầu tiên của cấp số nhân \(\left( {{u_n}} \right)\) trong các trường hợp sau: a) \({u_1} = {10^5};q = 0,1;n = 5\); b) \({u_1} = 10;{u_2} = - 20;n = 5\). Phương pháp giải: Sử dụng công thức tính tổng \(n\) số hạng đầu tiên của cấp số nhân có số hạng đầu \({u_1}\) và công bội \(q\) là: \({S_n} = \frac{{{u_1}\left( {1 - {q^n}} \right)}}{{1 - q}}\). Lời giải chi tiết: a) \({S_5} = \frac{{{u_1}\left( {1 - {q^5}} \right)}}{{1 - q}} = \frac{{{{10}^5}\left( {1 - {{\left( {0,1} \right)}^5}} \right)}}{{1 - 0,1}} = 111110\). b) Ta có: \({u_2} = {u_1}.q \Leftrightarrow - 20 = 10.q \Leftrightarrow q = - 2\) \({S_5} = \frac{{{u_1}\left( {1 - {q^5}} \right)}}{{1 - q}} = \frac{{10\left( {1 - {{\left( { - 2} \right)}^5}} \right)}}{{1 - \left( { - 2} \right)}} = 110\). Vận dụng 4 Trong bài toán ở Hoạt động mở đầu đầu bài học, tính tổng các độ cao của quả bóng sau 10 lần rơi đầu tiên. Phương pháp giải: Sử dụng công thức tính tổng \(n\) số hạng đầu tiên của cấp số nhân có số hạng đầu \({u_1}\) và công bội \(q\) là: \({S_n} = \frac{{{u_1}\left( {1 - {q^n}} \right)}}{{1 - q}}\). Lời giải chi tiết: Theo đề bài ta có dãy số chỉ độ cao của quả bóng là một cấp số nhân có số hạng đầu \({u_1} = 120\) và công bội \(q = \frac{1}{2}\). Tổng các độ cao của quả bóng sau 10 lần rơi đầu tiên là: \({S_{10}} = \frac{{{u_1}\left( {1 - {q^{10}}} \right)}}{{1 - q}} = \frac{{120\left( {1 - {{\left( {\frac{1}{2}} \right)}^{10}}} \right)}}{{1 - \left( {\frac{1}{2}} \right)}} = 239,765625\left( {cm} \right)\).
|