Giải mục 3 trang 22, 23 SGK Toán 11 tập 2 - Kết nối tri thứcCho đồ thị của hàm số (y = {2^x}) và (y = 4) như Hình 6.7. Tổng hợp đề thi học kì 1 lớp 11 tất cả các môn - Kết nối tri thức Toán - Văn - Anh - Lí - Hóa - Sinh
Lựa chọn câu để xem lời giải nhanh hơn
HĐ3 Video hướng dẫn giải Cho đồ thị của hàm số \(y = {2^x}\) và \(y = 4\) như Hình 6.7. Tìm khoảng giá trị của x mà đồ thị hàm số \(y = {2^x}\) nằm phía trên đường thẳng y = 4 và từ đó suy ra tập nghiệm của bất phương trình \({2^x} > 4.\) Phương pháp giải: Quan sát đồ thị Lời giải chi tiết: Khoảng giá trị của x mà đồ thị hàm số \(y = {2^x}\) nằm phía trên đường thẳng y = 4 là \(\left( {2; + \infty } \right)\) Vậy tập nghiệm của bất phương trình \({2^x} > 4\) là \(\left( {2; + \infty } \right)\) LT3 Video hướng dẫn giải Giải các bất phương trình sau: a) \(0,{1^{2x - 1}} \le 0,{1^{2 - x}};\) b) \({3.2^{x + 1}} \le 1.\) Phương pháp giải: Xét bất phương trình dạng \({a^x} > b\) +) a > 1, nghiệm của bất phương trình là \(x > {\log _a}b\) +) 0 < a < 1, nghiệm của bất phương trình là \(x < {\log _a}b\) Lời giải chi tiết: a) \(0,{1^{2x - 1}} \le 0,{1^{2 - x}} \Leftrightarrow 2x - 1 \ge 2 - x \Leftrightarrow 3x \ge 3 \Leftrightarrow x \ge 1\) b) \({3.2^{x + 1}} \le 1 \Leftrightarrow {2^{x + 1}} \le \frac{1}{3} \Leftrightarrow x + 1 \le {\log _2}\frac{1}{3} \Leftrightarrow x \le - {\log _2}3 - 1 = - {\log _2}3 - {\log _2}2 = - {\log _2}6\)
|