Giải mục 2 trang 80, 81, 82 SGK Toán 11 tập 1 - Kết nối tri thức

Trong không gian, cho một đường thẳng d và một điểm M không nằm trên d (H.4.21). Gọi (P) là mặt phẳng chứa M và d. a) Trên mặt phẳng (P) có bao nhiêu đường thẳng đi qua M và song song với d? b) Nếu một đường thẳng đi qua M và song song với d thì đường thẳng đó có thuộc mặt phẳng (P) hay không?

Tổng hợp đề thi học kì 1 lớp 11 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Lí - Hóa - Sinh

Lựa chọn câu để xem lời giải nhanh hơn

HĐ 2

Video hướng dẫn giải

Trong không gian, cho một đường thẳng d và một điểm M không nằm trên d (H.4.21). Gọi (P) là mặt phẳng chứa M d.

a) Trên mặt phẳng (P) có bao nhiêu đường thẳng đi qua M và song song với d?

b) Nếu một đường thẳng đi qua M và song song với d thì đường thẳng đó có thuộc mặt phẳng (P) hay không?

Phương pháp giải:

Trong không gian, qua một điểm không nằm trên dường thẳng cho trước, có đúng một đường thẳng song song với đường thẳng đã cho

Lời giải chi tiết:

a) Có duy nhất một đường thẳng đi qua M song song với d

b) Nếu một đường thẳng đi qua M và song song với d thì đường thẳng đó có thuộc mặt phẳng (P) vì hai đường thẳng song song đồng phẳng

HĐ 3

Video hướng dẫn giải

Quan sát lớp học và tìm hai đường thẳng song song với mép trên của bảng. Hai đường thẳng đó có song song với nhau hay không?

Phương pháp giải:

Trong không gian, hai đường thẳng phân biệt cùng song song với đường thẳng thứ ba thì song song với nhau

Lời giải chi tiết:

Đường thẳng song song với mép trên của bảng: Mép dưới của bảng, chân tường bục giảng

Hai đường thẳng đó cũng song song với nhau

LT 3

Video hướng dẫn giải

Trong Ví dụ 1, chứng minh rằng 4 điểm C, D, E, F đồng phẳng và tứ giác CDFE là hình bình hành.

Phương pháp giải:

Để chứng minh bốn điểm: C, D, E, F đồng phẳng ta có thể chứng minh hai đường thẳng AB CD song song

Dựa vào dấu hiệu tứ giác là hình bình hành để chứng minh CDEF là hình bình hành

Lời giải chi tiết:

Xét hình bình hành ABCD ta có: AB // CD, AB = CD

Xét hình bình hành ABEF ta có: AB // EF, AB = EF

Suy ra EF//CD, EF = CD

Suy ra CDEF là hình bình hành và C, D, E, F đồng phẳng

HĐ 4

Video hướng dẫn giải

Cho hai mặt phẳng (P)(Q) cắt nhau theo giao tuyến c. Một mặt phẳng (R) cắt (P) (Q) lần lượt theo giao tuyến ab khác c

a) Nếu hai đường thẳng ac cắt nhau tại M thì đường thẳng b có đi qua M hay không (H.4.23)? Giải thích vì sao.

b) Nếu hai đường thẳng a c song song với nhau thì hai đường thẳng bc có song song với nhau hay không (H.4.24)? Giải thích vì sao. 

Phương pháp giải:

Nếu ba mặt phẳng đôi một cắt nhau, theo ba giao tuyến phân biệt thì ba giao tuyến đó đồng quy hoặc đôi một song song với nhau

Lời giải chi tiết:

a) M thuộc c suy ra M nằm trên mp(Q)

M thuộc a suy ra M nằm trên mp(R)

M cùng thuộc mp(R)(Q) suy ra M nằm trên giao tuyến của mp(R) và (Q)

Như vậy , M thuộc b

LT 4

Video hướng dẫn giải

Trong Ví dụ 4, hãy xác định giao tuyến của hai mặt phẳng (SAD)(SBC)

Phương pháp giải:

Để xác định giao điểm của một đường thẳng và một mặt phẳng, ta có thể tìm giao điểm của đường thẳng đó với một đường thẳng nằm trong mặt phẳng đã cho.

Lời giải chi tiết:

Hai mp(SAD) và (SBC) có điểm chung S và chứa hai đường thẳng song song ADBC.

Do đó, giao tuyến của hai mp(SAD) và (SBC) là đường thẳng n đi qua S song cong với ADBC

VD 2

Video hướng dẫn giải

Một bề kính chứa nước có đáy là hình chữ nhật được đặt nghiêng như Hình 4.26. Giải thích tại sao đường mép nước AB song song với cạnh CD của bề nước

Phương pháp giải:

Nếu hai mặt phẳng chứa hai đường thẳng song song với nhau thì giao tuyến của chúng song song với hai đường thẳng đó hoặc trùng với một trong hai đường thẳng đó

Lời giải chi tiết:

Ta có: \(mp\left( {ABKI} \right) \cap mp\left( {CDIK} \right) = IK\)

\(mp\left( {ABKI} \right) \cap mp\left( {ABCD} \right) = AB\)

\(mp\left( {CDIK} \right) \cap \left( {ABCD} \right) = CD\)

IK // CD (Do CDIK là hình chữ nhật) suy ra AB // CD.

  • Bài 4.9 trang 82 SGK Toán 11 tập 1 - Kết nối tri thức

    Trong không gian, cho ba đường thẳng a, b, c. Những mệnh đề nào sau đây là đúng?a) Nếu a và b không cắt nhau thì a và b song song b) Nếu c và c chéo nhau thì b và c không cùng thuộc một mặt phẳng c) Nếu a và b cùng song song với c thì a song song với b. d) Nếu a và b cắt nhau, b và c cắt nhau thì a và c cắt nhau

  • Bài 4.10 trang 82 SGK Toán 11 tập 1 - Kết nối tri thức

    Cho hình chóp S.ABCD có đáy là hình bình hành. Trong các cặp đường thẳng sau, cặp đường thẳng nào cắt nhau, cặp đường thẳng nào song song, cặp đường thẳng nào chéo nhau? a) AB và CD b) AC và BD c) SB và CD

  • Bài 4.11 trang 82 SGK Toán 11 tập 1 - Kết nối tri thức

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh bên SA, SB, SC, SD (H.4.27). Chứng minh rằng tứ giác MNPQ là hình bình hành

  • Bài 4.12 trang 82 SGK Toán 11 tập 1 - Kết nối tri thức

    Cho hình chóp S.ABCD có đáy ABCD là hình thang (AB // CD). Gọi M, N lần lượt là trung điểm của các cạnh SA, SB. Chứng minh rằng tứ giác MNCD là hình thang.

  • Bài 4.13 trang 82 SGK Toán 11 tập 1 - Kết nối tri thức

    Cho hình chóp S.ABCD có đáy ABCD là hình thang (AB // CD). Gọi M là trung điểm của đoạn thẳng SD (H.4.28) a) Xác định giao tuyến của mặt phẳng (MAB) và (SCD) b) Gọi N là giao điểm của đường thẳng SC và mặt phẳng (MAB). Chứng minh rằng MN là đường trung bình của tam giác SCD

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close