Giải Bài 7.31 trang 34 sách bài tập toán 7 - Kết nối tri thức với cuộc sốngCho đa thức Đề bài Cho đa thức \(A\left( x \right) = 3{x^4} + 11{x^3} - 5{x^2} - 19x + 10\). Tìm đa thức H(x) sao cho \(A\left( x \right) = \left( {3{x^2} + 2x - 5} \right).H\left( x \right).\) Phương pháp giải - Xem chi tiết \(\begin{array}{l}A\left( x \right) = \left( {3{x^2} + 2x - 5} \right).H\left( x \right).\\ \Rightarrow H\left( x \right) = A\left( x \right):\left( {3{x^2} + 2x - 5} \right)\\ \Rightarrow H\left( x \right) = \left( {3{x^4} + 11{x^3} - 5{x^2} - 19x + 10} \right):\left( {3{x^2} + 2x - 5} \right)\end{array}\) Đặt phép tính chia để tìm H(x). Lời giải chi tiết \(\begin{array}{l}A\left( x \right) = \left( {3{x^2} + 2x - 5} \right).H\left( x \right).\\ \Rightarrow H\left( x \right) = A\left( x \right):\left( {3{x^2} + 2x - 5} \right)\\ \Rightarrow H\left( x \right) = \left( {3{x^4} + 11{x^3} - 5{x^2} - 19x + 10} \right):\left( {3{x^2} + 2x - 5} \right)\end{array}\) Vậy \(H\left( x \right) = {x^2} + 3x - 2\).
|