Giải bài 68 trang 30 sách bài tập toán 12 - Cánh diềuMột vật chuyển động với vận tốc (vleft( t right) = 3 - 2sin tleft( {m/s} right)), trong đó (t) là thời gian tính bằng giây. Tính quãng đường vật di chuyển trong khoảng thời gian từ thời điểm (t = 0left( s right)) đến thời điểm (t = frac{pi }{4}left( s right)). Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Cánh diều Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa Đề bài Một vật chuyển động với vận tốc \(v\left( t \right) = 3 - 2\sin t\left( {m/s} \right)\), trong đó \(t\) là thời gian tính bằng giây. Tính quãng đường vật di chuyển trong khoảng thời gian từ thời điểm \(t = 0\left( s \right)\) đến thời điểm \(t = \frac{\pi }{4}\left( s \right)\). Phương pháp giải - Xem chi tiết Sử dụng công thức: • \(\int {{x^\alpha }dx} = \frac{{{x^{\alpha + 1}}}}{{\alpha + 1}} + C\). • \(\int {\sin xdx} = - \cos x + C\). Lời giải chi tiết Quãng đường mà vật di chuyển trong khoảng thời gian từ thời điểm \(t = 0\left( s \right)\) đến thời điểm \(t = \frac{\pi }{4}\left( s \right)\) là: \(S = \int\limits_0^{\frac{\pi }{4}} {\left( {3 - 2\sin t} \right)dt} = \left. {\left( {3t + 2\cos t} \right)} \right|_0^{\frac{\pi }{4}} = \left( {3.\frac{\pi }{4} + 2\cos \frac{\pi }{4}} \right) - \left( {3.0 + 2\cos 0} \right) = \frac{{3\pi }}{4} + \sqrt 2 - 2\left( m \right)\).
|