Giải bài 62 trang 68 sách bài tập toán 12 - Cánh diềuToạ độ tâm của mặt cầu (left( S right):{left( {x + 19} right)^2} + {left( {y - 20} right)^2} + {left( {z + 21} right)^2} = 22) là: A. (left( { - 19;20; - 21} right)). B. (left( {19;20; - 21} right)). C. (left( { - 19;20;21} right)). D. (left( {19;20;21} right)). Tổng hợp đề thi học kì 2 lớp 12 tất cả các môn - Cánh diều Toán - Văn - Anh - Hoá - Sinh - Sử - Địa Đề bài Toạ độ tâm của mặt cầu \(\left( S \right):{\left( {x + 19} \right)^2} + {\left( {y - 20} \right)^2} + {\left( {z + 21} \right)^2} = 22\) là: A. \(\left( { - 19;20; - 21} \right)\). B. \(\left( {19;20; - 21} \right)\). C. \(\left( { - 19;20;21} \right)\). D. \(\left( {19;20;21} \right)\). Phương pháp giải - Xem chi tiết Mặt cầu \(\left( S \right):{\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} + {\left( {z - c} \right)^2} = {R^2}\) có tâm \(I\left( {a;b;c} \right)\) bán kính \(R\). Lời giải chi tiết Mặt cầu \(\left( S \right):{\left( {x + 19} \right)^2} + {\left( {y - 20} \right)^2} + {\left( {z + 21} \right)^2} = 22\) có tâm \(I\left( { - 19;20; - 21} \right)\). Chọn A.
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
|