Giải bài 6 trang 91 sách bài tập toán 12 - Cánh diềuKhi điều tra độ tuổi của dân cư trong một khu phố (đơn vị: tuổi) được kết quả cho bởi Bảng 9. a) Khoảng biến thiên của mẫu số liệu ghép nhóm đó là: (R = 90) (tuổi). b) Nhóm 3 là nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng (frac{n}{4} = frac{{200}}{4} = 50). c) ({Q_3} = 52frac{{17}}{{24}}). d) Khoảng tứ phân vị của mẫu số liệu lớn hơn 20. A. 120. B. 80. C. 20. D. 200. Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Cánh diều Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa Đề bài Khi điều tra độ tuổi của dân cư trong một khu phố (đơn vị: tuổi) được kết quả cho bởi Bảng 9. a) Khoảng biến thiên của mẫu số liệu ghép nhóm đó là: \(R = 90\) (tuổi). b) Nhóm 3 là nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng \(\frac{n}{4} = \frac{{200}}{4} = 50\). c) \({Q_3} = 52\frac{{17}}{{24}}\). d) Khoảng tứ phân vị của mẫu số liệu lớn hơn 20. Phương pháp giải - Xem chi tiết ‒ Sử dụng công thức tính khoảng biến thiên của mẫu số liệu ghép nhóm: \(R = {a_{m + 1}} - {a_1}\). ‒ Sử dụng công thức tính các tứ phân vị của mẫu số liệu ghép nhóm: + Nhóm thứ \(p\) là nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng \(\frac{n}{4}\) (tức là \(c{f_{p - 1}} < \frac{n}{4}\) nhưng \(c{f_p} \ge \frac{n}{4}\)). Ta gọi \(s,h,{n_p}\) lần lượt là đầu mút trái, độ dài, tần số của nhóm \(p\), \(c{f_{p - 1}}\) là tần số tích luỹ của nhóm thứ \(p - 1\). Khi đó: \({Q_1} = s + \left( {\frac{{\frac{n}{4} - c{f_{p - 1}}}}{{{n_p}}}} \right).h\). + Nhóm thứ \(q\) là nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng \(\frac{{3n}}{4}\) (tức là \(c{f_{q - 1}} < \frac{{3n}}{4}\) nhưng \(c{f_q} \ge \frac{{3n}}{4}\)). Ta gọi \(t,l,{n_q}\) lần lượt là đầu mút trái, độ dài, tần số của nhóm \(q\), \(c{f_{q - 1}}\) là tần số tích luỹ của nhóm thứ \(q - 1\). Khi đó: \({Q_3} = t + \left( {\frac{{\frac{{3n}}{4} - c{f_{q - 1}}}}{{{n_q}}}} \right).l\). ‒ Sử dụng công thức tính khoảng tứ phân vị của mẫu số liệu ghép nhóm: \(\Delta Q = {Q_3} - {Q_1}\). Lời giải chi tiết Khoảng biến thiên của mẫu số liệu ghép nhóm đó là: \(R = 90 - 10 = 80\). Vậy a) sai. Ta có bảng sau: Nhóm 3 là nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng \(\frac{n}{4} = \frac{{200}}{4} = 50\). Vậy b) đúng. Nhóm 3 có đầu mút trái \(s = 30\), độ dài \(h = 10\), tần số của nhóm \({n_3} = 40\) và nhóm 2 có tần số tích luỹ \(c{f_2} = 49\). Ta có: \({Q_1} = s + \left( {\frac{{50 - c{f_2}}}{{{n_3}}}} \right).h = 30 + \left( {\frac{{50 - 49}}{{40}}} \right).10 = 30,25\) (tuổi). Nhóm 5 là nhóm đầu tiên có tần số tích luỹ lớn hơn hoặc bằng \(\frac{{3n}}{4} = \frac{{3.200}}{4} = 150\). Nhóm 5 có đầu mút trái \(t = 50\), độ dài \(l = 10\), tần số của nhóm \({n_5} = 50\) và nhóm 4 có tần số tích luỹ \(c{f_4} = 137\). Ta có: \({Q_3} = t + \left( {\frac{{150 - c{f_4}}}{{{n_5}}}} \right).l = 50 + \left( {\frac{{150 - 137}}{{50}}} \right).10 = 52,6\) (tuổi). Vậy c) sai. Khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \(\Delta Q = {Q_3} - {Q_1} = 52,6 - 30,25 = 22,35 > 20\). Vậy d) đúng. a) S. b) Đ. c) S. d) Đ.
|