Bài 6 trang 80 SBT toán 8 tập 1Giải bài 6 trang 80 sách bài tập toán 8. Chứng minh rằng các góc của một tứ giác không thể đều là góc nhọn, không thể đều là góc tù. Đề bài Chứng minh rằng các góc của một tứ giác không thể đều là góc nhọn, không thể đều là góc tù. Phương pháp giải - Xem chi tiết +) Tổng bốn góc của một tứ giác bằng 360o. Lời giải chi tiết Giả sử cả bốn góc của tứ giác đều là góc nhọn (tức là mỗi góc có số đo nhỏ hơn 90o) thì tổng bốn góc của tứ giác nhỏ hơn 90o+90o+90o+90o=360o, trái với tính chất tổng các góc của tứ giác bằng 360o. Vậy bốn góc của tứ giác không thể đều là góc nhọn. Giả sử cả bốn góc của tứ giác đều là góc tù (tức là mỗi góc có số đo lớn hơn 90o) thì tổng bốn góc của tứ giác lớn hơn 90o+90o+90o+90o=360o, trái với tính chất tổng các góc của tứ giác bằng 360o. Vậy bốn góc của tứ giác không thể đều là góc tù. HocTot.Nam.Name.Vn
|