Bài 5.112 trang 217 SBT đại số và giải tích 11

Giải bài 5.112 trang 217 sách bài tập đại số và giải tích 11. Tìm đạo hàm của các hàm số sau :...

Lựa chọn câu để xem lời giải nhanh hơn

Tìm đạo hàm của các hàm số sau :

LG a

\(y = x{\cot ^2}x\) 

Phương pháp giải:

Sử dụng công thức đạo hàm các hàm số lượng giác. Xem tại đây.

Lời giải chi tiết:

\(\begin{array}{l}
y' = \left( x \right)'{\cot ^2}x + x\left( {{{\cot }^2}x} \right)'\\
= {\cot ^2}x + x.2\cot x.\left( { - \dfrac{1}{{{{\sin }^2}x}}} \right)\\
= {\cot ^2}x - 2x.\dfrac{{\cos x}}{{\sin x}}.\dfrac{1}{{{{\sin }^2}x}}\\
= {\cot ^2}x - \dfrac{{2x\cos x}}{{{{\sin }^3}x}}
\end{array}\)

LG b

\(y = {{\sin \sqrt x } \over {\cos 3x}}\)

Lời giải chi tiết:

\(\begin{array}{l}
y'\\
= \dfrac{{\left( {\sin \sqrt x } \right)'\cos 3x - \sin \sqrt x \left( {\cos 3x} \right)'}}{{{{\cos }^2}3x}}\\
= \dfrac{{\dfrac{1}{{2\sqrt x }}\cos \sqrt x \cos 3x - \sin \sqrt x .\left( { - 3\sin 3x} \right)}}{{{{\cos }^2}3x}}\\
= \dfrac{{\dfrac{{\cos \sqrt x \cos 3x + 3.2\sqrt x \sin \sqrt x \sin 3x}}{{2\sqrt x }}}}{{{{\cos }^2}3x}}\\
= \dfrac{{\cos \sqrt x \cos 3x + 6\sqrt x \sin \sqrt x \sin 3x}}{{2\sqrt x {{\cos }^2}3x}}
\end{array}\)

LG c

\(y = {\left( {\sin 2x + 8} \right)^3}\)

Lời giải chi tiết:

\(\begin{array}{l}
y' = 3{\left( {\sin 2x + 8} \right)^2}\left( {\sin 2x + 8} \right)'\\
= 3{\left( {\sin 2x + 8} \right)^2}\left( {2\cos 2x} \right)\\
= 6\cos 2x{\left( {\sin 2x + 8} \right)^2}
\end{array}\)

LG d

\(y = \left( {2{x^3} - 5} \right)\tan x.\)

Lời giải chi tiết:

\(\begin{array}{l}
y'\\
= \left( {2{x^3} - 5} \right)'\tan x + \left( {2{x^3} - 5} \right)\left( {\tan x} \right)'\\
= 2.3{x^2}\tan x + \left( {2{x^3} - 5} \right).\dfrac{1}{{{{\cos }^2}x}}\\
= 6{x^2}\tan x + \dfrac{{2{x^3} - 5}}{{{{\cos }^2}x}}
\end{array}\)

HocTot.Nam.Name.Vn

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM; 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.

close