Giải bài 4.7 trang 8 sách bài tập toán 12 - Kết nối tri thứcTìm: a) (int {left( {x + {{sin }^2}frac{x}{2}} right)} dx); b) (int {{{left( {2tan x + cot x} right)}^2}} {rm{ }}dx). Đề bài Tìm: a) \(\int {\left( {x + {{\sin }^2}\frac{x}{2}} \right)} dx\); b) \(\int {{{\left( {2\tan x + \cot x} \right)}^2}} {\rm{ }}dx\). Phương pháp giải - Xem chi tiết Ý a: Sử dụng công thức hạ bậc cho \({\sin ^2}\frac{x}{2}\), áp dụng các công thức tính nguyên hàm cơ bản cho hàm lượng giác và các hàm còn lại. Ý b: Khai triển, rút gọn biểu thức dưới dấu căn bằng các công thức lượng giác đã học đưa hàm số về dạng có thể áp dụng trực tiếp công thức nguyên hàm cơ bản. Gợi ý: \({\tan ^2}x = 1 + \frac{1}{{{{\cos }^2}x}};{\rm{ co}}{{\rm{t}}^2}x = 1 + \frac{1}{{{{\sin }^2}x}}\). Lời giải chi tiết a) Ta có \(\int {\left( {x + {{\sin }^2}\frac{x}{2}} \right)} dx = \int x dx + \int {\frac{{1 - \cos x}}{2}} dx = \frac{{{x^2}}}{2} + \frac{x}{2} - \frac{{\sin x}}{2} + C = \frac{{{x^2} + x - \sin x}}{2} + C\). b) Ta có \({\left( {2\tan x + \cot x} \right)^2} = 4{\tan ^2}x + 4 \cdot \tan x \cdot \cot x + {\cot ^2}x\)\( = 4 \cdot \left( {1 + \frac{1}{{{{\cos }^2}x}}} \right) + 4 \cdot 1 + \left( {1 + \frac{1}{{{{\sin }^2}x}}} \right)\) \( = 9 + \frac{4}{{{{\cos }^2}x}} + \frac{1}{{{{\sin }^2}x}}\). Do đó\(\int {{{\left( {2\tan x + \cot x} \right)}^2}} dx = \int {\left( {9 + \frac{4}{{{{\cos }^2}x}} + \frac{1}{{{{\sin }^2}x}}} \right)} dx\) \( = 9\int {dx} + 4\int {\frac{1}{{{{\cos }^2}x}}} dx + \int {\frac{1}{{{{\sin }^2}x}}} dx = 9x + 4\tan x - \cot x + C\).
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
|