Bài 4.6 phần bài tập bổ sung trang 117 SBT toán 9 Tập 1Giải bài 4.6 phần bài tập bổ sung trang 117 sách bài tập toán 9. Trong hình thang ABCD, tổng của hai đáy AD và BC bằng b, đường chéo AC bằng a, góc ACB bằng α. Hãy tìm diện tích của hình thang đó. Đề bài Trong hình thang \(ABCD,\) tổng của hai đáy \(AD\) và \(BC\) bằng \(b,\) đường chéo \(AC\) bằng \(a,\) góc \(ACB\) bằng \(α.\) Hãy tìm diện tích của hình thang đó. Phương pháp giải - Xem chi tiết Áp dụng các hệ thức về cạnh và góc trong tam giác vuông, tam giác \(ABC\) vuông tại \(A\) có \(AB=c,\,AC=b,\, BC=a\) thì: \(b=a.sin\,B=a.cos\,C\) Công thức diện tích hình thang: \(S = \dfrac{a+b} { 2}.h\) Lời giải chi tiết Kẻ đường cao \(AH\) của tam giác \(ABC\). Ta có \(AD + BC = b,\, AC = a,\) \(\widehat {ACB} = \alpha \) Xét tam giác vuông ACH, ta có: \(AH =AC.\sin {ACB}= a.\sinα\) Diện tích hình thang là: \(S = \dfrac{AD + BC} { 2}.AH = \dfrac{ab}{2}\sin \alpha .\) HocTot.Nam.Name.Vn
|