Giải bài 4.37 trang 20 sách bài tập toán 12 - Kết nối tri thức

Cho hàm số (y = fleft( x right)) liên tục trên (left[ {a;b} right]) và (fleft( x right) le 0,forall x in left[ {a;b} right]). Diện tích hình phẳng giới hạn bởi đồ thị hàm số (y = fleft( x right)), trục (Ox) và hai đường thẳng (x = a,x = b) được tính bằng công thức A. (S = intlimits_a^b {fleft( x right)dx} ). B. (S = - intlimits_a^b {fleft( x right)dx} ). C. (S = pi intlimits_a^b {fleft( x right)dx} ). D. (S = pi intlimits_a^b {{{

Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa

Đề bài

Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\left[ {a;b} \right]\) và \(f\left( x \right) \le 0,\forall x \in \left[ {a;b} \right]\). Diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = f\left( x \right)\), trục \(Ox\) và hai đường thẳng \(x = a,x = b\) được tính bằng công thức

A. \(S = \int\limits_a^b {f\left( x \right)dx} \).

B. \(S =  - \int\limits_a^b {f\left( x \right)dx} \).                            

C. \(S = \pi \int\limits_a^b {f\left( x \right)dx} \).

D. \(S = \pi \int\limits_a^b {{{\left[ {f\left( x \right)} \right]}^2}dx} \).

Phương pháp giải - Xem chi tiết

Diện tích hình phẳng theo yêu cầu bài toán được tính theo công thức  \(S = \int\limits_a^b {\left| {f\left( x \right)} \right|dx} \).

Lời giải chi tiết

Diện tích hình phẳng cần tìm là

\(S = \int\limits_a^b {\left| {f\left( x \right)} \right|dx}  = \int\limits_a^b {\left[ { - f\left( x \right)} \right]dx}  =  - \int\limits_a^b {f\left( x \right)dx} \) (do \(f\left( x \right) \le 0,\forall x \in \left[ {a;b} \right]\)).

Vậy ta chọn đáp án B.

  • Giải bài 4.38 trang 20 sách bài tập toán 12 - Kết nối tri thức

    Một đất nước tiêu thụ dầu theo tốc độ xác định bởi (rleft( t right) = 20 cdot {e^{0,2t}}) tỉ thùng mỗi năm, trong đó t là thời gian tính theo năm, (0 le t le 10). Trong khoảng 10 năm kể trên, nước đó đã tiêu thụ lượng dầu là A. (rleft( {10} right)). B. (rleft( {10} right) - rleft( 0 right)). C. (intlimits_0^{10} {r'left( t right)dt} ). D. (intlimits_0^{10} {rleft( t right)dt} ).

  • Giải bài 4.39 trang 20 sách bài tập toán 12 - Kết nối tri thức

    Cho (S) là diện tích phần hình phẳng được tô màu như Hình 4.7. Khi đó diện tích (S) là A. (S = intlimits_a^b {left| {fleft( x right) - gleft( x right)} right|dx} ). B. (S = intlimits_a^m {left| {fleft( x right) - gleft( x right)} right|dx} + intlimits_m^b {left| {gleft( x right) - fleft( x right)} right|dx} ). C. (S = intlimits_a^m {left| {fleft( x right)} right|dx} + intlimits_m^b {left| {gleft( x right)} right|dx} ). D. (S = i

  • Giải bài 4.40 trang 20 sách bài tập toán 12 - Kết nối tri thức

    Khi nghiên cứu một quần thể vi khuẩn, người ta nhận thấy quần thể vi khuẩn đó ở ngày thứ t có số lượng (Nleft( t right)) con. Biết rằng tốc độ phát triển của quần thể đó là (N'left( t right) = frac{{8000}}{t}) và sau ngày thứ nhất (left( {t = 1} right)) có 250 000 con. Sau 6 ngày (left( {t = 6} right)), số lượng của quần thể vi khuẩn là A. 353 584 con. B. 234 167 con. C. 288 959 con. D. 264 334 con.

  • Giải bài 4.41 trang 21 sách bài tập toán 12 - Kết nối tri thức

    Tìm họ tất cả các nguyên hàm của các hàm số sau: a) (y = {sin ^2}frac{x}{2}); b) (y = {e^{2x}} - 2{x^5} + 5).

  • Giải bài 4.42 trang 21 sách bài tập toán 12 - Kết nối tri thức

    Tìm một nguyên hàm \(F\left( x \right)\) của hàm số \(f\left( x \right) = 2x - \frac{1}{x}\) thỏa mãn điều kiện \(F\left( 1 \right) = 3\).

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close