Giải bài 4.16 trang 13 sách bài tập toán 12 - Kết nối tri thức

Tính các tích phân sau: a) (intlimits_0^1 {left( {{3^x} - 2{e^x}} right)dx} ); b) (intlimits_0^1 {frac{{{{left( {{e^x} - 1} right)}^2}}}{{2{e^x}}}dx} ).

Tổng hợp đề thi học kì 1 lớp 12 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Lí - Hóa - Sinh - Sử - Địa

Đề bài

Tính các tích phân sau:

a) \(\int\limits_0^1 {\left( {{3^x} - 2{e^x}} \right)dx} \);

b) \(\int\limits_0^1 {\frac{{{{\left( {{e^x} - 1} \right)}^2}}}{{2{e^x}}}dx} \).

Phương pháp giải - Xem chi tiết

Ý a: Sử dụng công thức nguyên hàm của hàm số mũ.

Ý b: Sử dụng công thức nguyên hàm của hàm số mũ.

Lời giải chi tiết

a) Ta có \(\int\limits_0^1 {\left( {{3^x} - 2{e^x}} \right)dx}  = \left. {\left( {\frac{{{3^x}}}{{\ln 3}} - 2{e^x}} \right)} \right|_0^1 = \frac{3}{{\ln 3}} - 2e - \frac{1}{{\ln 3}} + 2 = 2 - 2e + \frac{2}{{\ln 3}}\).

b) Ta có

\(\int\limits_0^1 {\frac{{{{\left( {{e^x} - 1} \right)}^2}}}{{2{e^x}}}dx}  = \int\limits_0^1 {\frac{{{e^{2x}} - 2{e^x} + 1}}{{2{e^x}}}dx}  = \int\limits_0^1 {\frac{{{e^{2x}} - 2{e^x} + 1}}{{2{e^x}}}dx}  = \int\limits_0^1 {\left( {\frac{{{e^x}}}{2} - 1 + \frac{1}{{2{e^x}}}} \right)dx}  = \frac{1}{2}\int\limits_0^1 {{e^x}dx - \int\limits_0^1 {dx - \frac{1}{2}} } \int\limits_0^1 {{{\left( {{e^{ - x}}} \right)}^\prime }dx} \)\( = \left. {\frac{1}{2}{e^x}} \right|_0^1 - \left. x \right|_0^1 - \frac{1}{2}\left. {{e^{ - x}}} \right|_0^1 = \frac{{e - 1}}{2} - 1 - \frac{{{e^{ - 1}}}}{2} + \frac{1}{2} = \frac{{e - {e^{ - 1}} - 2}}{2}\).

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí

close