Giải bài 4 trang 28 SGK Toán 8 tập 1 - Cánh diềuChứng minh giá trị của mỗi biểu thức sau không phụ thuộc vào giá trị của biến: Tổng hợp đề thi học kì 1 lớp 8 tất cả các môn - Cánh diều Toán - Văn - Anh - Khoa học tự nhiên Đề bài Chứng minh giá trị của mỗi biểu thức sau không phụ thuộc vào giá trị của biến: a) \(A = 0,2\left( {5{\rm{x}} - 1} \right) - \dfrac{1}{2}\left( {\dfrac{2}{3}x + 4} \right) + \dfrac{2}{3}\left( {3 - x} \right)\) b) \(B = \left( {x - 2y} \right)\left( {{x^2} + 2{\rm{x}}y + 4{y^2}} \right) - \left( {{x^3} - 8{y^3} + 10} \right)\) c) \(C = 4{\left( {x + 1} \right)^2} + {\left( {2{\rm{x}} - 1} \right)^2} - 8\left( {x - 1} \right)\left( {x + 1} \right) - 4{\rm{x}}\) Video hướng dẫn giải Phương pháp giải - Xem chi tiết Áp dụng các quy tắc của phép tính đa thức nhiều biến, các hằng đẳng thức đã học để tính giá trị các biểu thức đã cho mà kết quả không chứa biến. Lời giải chi tiết a) \(A = 0,2\left( {5{\rm{x}} - 1} \right) - \dfrac{1}{2}\left( {\dfrac{2}{3}x + 4} \right) + \dfrac{2}{3}\left( {3 - x} \right)\) \(A = x - 0,2 - \dfrac{1}{3}x - 2 + 2 - \dfrac{2}{3}x\) \(A = \left( {x - \dfrac{1}{3}x - \dfrac{2}{3}x} \right) + \left( {-0,2 - 2 + 2} \right)\) \(A = - 0,2\) Vậy \(A = - 0,2\) không phụ thuộc vào biến x b) \(B = \left( {x - 2y} \right)\left( {{x^2} + 2{\rm{x}}y + 4{y^2}} \right) - \left( {{x^3} - 8{y^3} + 10} \right)\) \(B = \left[ {x - {{\left( {2y} \right)}^3}} \right] - {x^3} + 8{y^3} - 10\) \(B = {x^3} - 8{y^3} - {x^3} + 8{y^3} - 10 = - 10\) Vậy B = -10 không phụ thuộc vào biến x, y. c) \(C = 4{\left( {x + 1} \right)^2} + {\left( {2{\rm{x}} - 1} \right)^2} - 8\left( {x - 1} \right)\left( {x + 1} \right) - 4{\rm{x}}\) \({\rm{C = 4}}\left( {{x^2} + 2{\rm{x}} + 1} \right) + \left( {4{{\rm{x}}^2} - 4{\rm{x}} + 1} \right) - 8\left( {{x^2} - 1} \right) - 4{\rm{x}}\) \(C = 4{{\rm{x}}^2} + 8{\rm{x}} + 4 + 4{{\rm{x}}^2} - 4{\rm{x}} + 1 - 8{{\rm{x}}^2} + 8 - 4{\rm{x}}\) \(C = \left( {4{{\rm{x}}^2} + 4{{\rm{x}}^2} - 8{{\rm{x}}^2}} \right) + \left( {8{\rm{x}} - 4{\rm{x}} - 4{\rm{x}}} \right) + \left( {4 + 1 + 8} \right)\) \(C = 13\) Vậy C = 13 không phụ thuộc vào biến x
|